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We calculate the dynamic structure factor S�� ,q� of spinless fermions in one dimension with quadratic
energy dispersion k2 /2m and long-range density-density interaction whose Fourier transform fq is dominated
by small momentum transfers q�q0�kF. Here q0 is a momentum-transfer cutoff and kF is the Fermi momen-
tum. Using functional bosonization and the known properties of symmetrized closed fermion loops, we obtain
an expansion of the inverse irreducible polarization to second order in the small parameter q0 /kF. In contrast
to perturbation theory based on conventional bosonization, our functional bosonization approach is not
plagued by mass-shell singularities. For interactions which can be expanded as fq= f0+ f0�q

2 /2+O�q4� with
f0��0, we show that the momentum scale qc=1 / �mf0�� separates two regimes characterized by a different q
dependence of the width �q of the collective zero sound mode and other features of S�� ,q�. For qc�q�kF we
find that the line shape is non-Lorentzian with an overall width �q�q3 / �mqc� and a threshold singularity
���−�q

−�ln2��−�q
−��−1 at the lower edge �→�q

−=vq−�q, where v is the velocity of the zero sound mode.
Assuming that higher orders in perturbation theory transform the logarithmic singularity into an algebraic one,
we find for the corresponding threshold exponent �q=1−2�q with �q�qc

2 /q2. Although for q�qc we have not
succeeded to explicitly evaluate our functional bosonization result for S�� ,q�, we argue that for any one-
dimensional model belonging to the Luttinger liquid universality class, the width of the zero sound mode scales
as q2 /m for q→0.
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I. INTRODUCTION

Recently several authors have calculated the dynamic
structure factor S�� ,q� in the Luttinger liquid phase of
model systems for interacting fermions with nonlinear en-
ergy dispersion in one spatial dimension.1–15 Mathematically,
S�� ,q� is defined as the spectral density of the density-
density correlation function,

S��,q� =� dt� dx ei��t−qx���	̂�x,t��	̂�0,0�� , �1.1�

where �	̂�x , t� is the operator representing the deviation of
the density from its average. The dynamic structure factor
can be directly measured via scattering experiments probing
density-density correlations of the system. It is therefore im-
portant to have quantitatively accurate theoretical predictions
for the line shape of S�� ,q�.

Although there is general agreement that in the Luttinger
liquid regime of one-dimensional interacting fermions
S�� ,q� exhibits for small frequencies � and wave vectors q
a narrow peak associated with the collective zero sound �ZS�
mode,16,17 a quantitative understanding of the precise line
shape of the ZS resonance in generic nonintegrable models is
still lacking. The spectral line shape is expected to depend on
nonuniversal parameters of the model under consideration,
such as the nonlinear terms in the expansion of the energy
dispersion 
k around the Fermi momentum kF, the coeffi-
cients in the expansion of the Fourier transform fq of the
interaction for small momentum transfers q, or the strength
of backscattering interactions involving momentum transfers
of order 2kF. Because these parameters correspond to cou-
plings which are irrelevant �in the renormalization-group

sense� at the Luttinger liquid fixed point, the line shape of
S�� ,q� is hard to obtain using standard field-theoretical
methods, such as field-theoretical bosonization, which has
otherwise been very successful in obtaining the infrared
properties of Luttinger liquids.18–21 Recall that the crucial
step in the bosonization approach is the linearization of the
energy dispersion around the Fermi points, 
kF+q−
kF

	vFq,
where vF is the Fermi velocity. If in addition the Fourier
transform fq of the interaction is nonzero only for small mo-
mentum transfers �q�kF�, we arrive at the exactly solvable
Tomonaga-Luttinger model �TLM�, whose bosonized Hamil-
tonian is noninteracting.18–21 As a consequence, the dynamic
structure factor of the TLM has only a single �-function peak
corresponding to a collective ZS mode with infinite lifetime.
For spinless fermions with long-range density-density inter-
action fq one obtains for small q,

STLM��,q� = Zq��� − v0�q�� , �1.2�

where the velocity v0 and the weight Zq of the collective ZS
mode can be written as

v0/vF = 
1 + g0, �1.3�

Zq =
vFq2

2�v0�q�
=

�q�

2�
1 + g0

. �1.4�

For later convenience we have introduced the relevant di-
mensionless interaction at vanishing momentum transfer,

g0 = �0f0, �1.5�

where �0=1 / ��vF� is the noninteracting density of states at
the Fermi energy.
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The question is now how the line shape of S�� ,q�
changes if we do not linearize the energy dispersion. There
have been many recent attempts to find an answer to this
question. Roughly, the proposed methods can be divided into
four different categories:

�1� Conventional bosonization. The established machinery
of conventional bosonization18–21 has been used in Refs. 1, 8,
and 14 to calculate the dynamic structure factor of Luttinger
liquids. Expanding the energy dispersion around k=kF be-
yond linear order, 
kF+q	
kF

+vFq+q2 / �2m�, the quadratic
term q2 / �2m� gives rise to cubic interaction vertices propor-
tional to 1 /m in the bosonized model.22 Hence, bosonization
maps the original �unsolvable� fermionic many-body prob-
lem onto another unsolvable problem involving bosonic de-
grees of freedom. The hope is that perturbation theory for the
effective boson model is well defined and more convenient
to carry out in practice than in the original fermion model.19

Unfortunately, this strategy fails for the calculation of
S�� ,q� because already to second order in 1 /m one encoun-
ters singular terms proportional to 1 / ��v0q�, which be-
come arbitrarily large as the frequency approaches the mass
shell �→ v0q. Some time ago Samokhin1 proposed a
simple regularization procedure of these mass-shell singu-
larities which we shall review in Sec. III. Assuming a
Lorentzian line shape, he found that for q→0 most of the
spectral weight is smeared out over an interval of width
q2 /m. Although this estimate for the width of the ZS reso-
nance was later confirmed by various other
calculations,4,9–11,14 the assumption of a Lorentzian line
shape turns out to be incorrect. It would be more desirable to
have a controlled method of resumming the interaction in the
bosonized Hamiltonian to infinite orders such that the un-
physical mass-shell singularities are properly regularized; ap-
parently this problem has not been solved so far. We shall
further elaborate on these mass-shell singularities in Secs. III
and V.

�2� Resumming fermionic perturbation theory via an ef-
fective Hamiltonian. Because of the above mentioned prob-
lems inherent in standard bosonization, it seems better to set
up the perturbation expansion in terms of the original fermi-
onic degrees of freedom using diagrammatic techniques. In
this approach, it is convenient to first calculate the polariza-
tion function ��i� ,q� for imaginary frequencies and then
use the fluctuation-dissipation theorem to obtain the dynamic
structure factor,

S��,q� = �−1 Im ��� + i0,q� . �1.6�

For simplicity, we shall focus on the limit of vanishing tem-
perature throughout this work. For long-range interactions
whose Fourier transforms fq are dominated by small wave
vectors q�kF, one usually avoids the direct expansion
��� ,q� in powers of the bare interaction but instead expands
its irreducible part ���� ,q� which is defined via

�−1��,q� = fq + ��
−1��,q� . �1.7�

In a recent paper, Pustilnik et al.4 did not follow this standard
approach but expanded the full �i.e., reducible� polarization
��� ,q� in powers of the bare interaction. They found al-
ready at the first order in the bare interaction that the correc-

tion to S�� ,q� diverges logarithmically if � approaches a
certain threshold edge �q

− from above. Pustilnik et al.4 then
proposed a resummation procedure of the most singular
terms in the perturbation series to all orders using an effec-
tive Hamiltonian constructed in analogy with the x-ray prob-
lem. In this way, they succeeded to transform the logarithmic
threshold singularity into an algebraic one, characterized by
a certain momentum-dependent threshold exponent. The
spectral line shape cannot therefore be approximated by a
Lorentzian as implicitly assumed by Samokhin;1 on the other
hand, Samokhin’s result1 that the overall width of the ZS
resonance scales as q2 /m was confirmed by Pustilnik et al.4

However, Pustilnik et al.4 did not explicitly analyze the
higher-order terms in the perturbation series to demonstrate
that the logarithmic singularity encountered at the first order
can really be resummed to all orders to yield an algebraic
singularity. Moreover, they did not keep track of the �finite�
renormalization of the ZS velocity v, which determines the
precise energy scale of the collective ZS resonance and its
position relative to the energy of the single-pair particle-hole
continuum, which a priori need not be identical.

�3� Integrable models. The dynamic structure factor of
Luttinger liquids may also be studied using exactly solvable
models belonging to the Luttinger liquid universality class,
such as the XXZ chain9–11 or the Calogero-Sutherland
model.5,6 These calculations have confirmed the results ob-
tained by Pustilnik et al.4 for generic �not necessarily inte-
grable� one-dimensional Luttinger liquids: The spectral line
shape is non-Lorentzian, exhibits algebraic threshold singu-
larities, and the weight is smeared over a frequency interval
proportional to q2 /m for q→0. However, one cannot exclude
the possibility that the algebraic threshold singularities are a
special feature of integrable models and that in generic non-
integrable models the higher-order terms in the perturbation
series do not conspire to transform logarithmic singularities
into algebraic ones. Note also that the effective two-body
interaction in the spinless fermion model obtained from the
XXZ chain via the usual Jordan-Wigner transformation in-
volves also momentum transfers of the order of 2kF. This
model is therefore different from the forward-scattering
model �FSM� with quadratic dispersion considered here,
where the Fourier transform of the density-density interac-
tion fq is only finite for q�kF. Apparently, an exactly solv-
able model with nonlinear energy dispersion and density-
density interaction fq involving only small momentum
transfers and fq=0�0 does not exist.

�4� Functional bosonization. This is an alternative method
of describing fermionic many-body systems with dominant
forward scattering in terms of bosonic degrees of freedom. In
the context of the TLM, the functional bosonization idea has
been introduced by Fogedby23 and by Lee and Chen.24 Later
this technique has been used to bosonize interacting fermions
with dominant forward scattering in arbitrary dimensions25

and to estimate the effect of the nonlinear energy dispersion
on the single-particle Green’s function.26 For a review of this
approach see Ref. 27, where the advantages of this method
for calculating the dynamic structure factor have already
been advocated. Like in conventional bosonization, in the
functional bosonization approach the nonlinear terms in the
energy dispersion give rise to interaction vertices in the ef-
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fective bosonized action of the system. However, the inter-
action vertices in functional bosonization are rather different
from the vertices due to the nonlinear dispersion in conven-
tional bosonization. In fact, the interaction vertices in func-
tional bosonization can be identified diagrammatically with
symmetrized closed fermion loops, which can be calculated
exactly for quadratic dispersion in one dimension.28–30 While
in conventional bosonization a quadratic energy dispersion
gives rise to cubic vertices in the bosonized Hamiltonian,19,22

within functional bosonization a quadratic dispersion leads to
infinitely many vertices involving an arbitrary number of bo-
son fields. The fact that perturbation theory for S�� ,q� based
on functional bosonization is different from perturbation
theory based on conventional bosonization is obvious if one
considers the noninteracting limit: While functional
bosonization yields the exact free polarization �0�� ,q�, con-
ventional bosonization produces an expansion of �0�� ,q� in
powers of 1 /m, which in practice has to be truncated at some
low order, leading to unphysical mass-shell singularities.

In Ref. 12 two of us have used the functional bosonization
approach to calculate the width �q of the ZS mode in a gen-
eralized Tomonaga model with quadratic energy dispersion.
To estimate the effect of nonlinear energy dispersion on the
dynamic structure factor, we have truncated the expansion of
the inverse irreducible polarization at the first order in an
expansion in powers of the Gaussian propagator of the boson
fields, which can be identified with the effective screened
interaction within random-phase approximation �RPA� de-
fined in Fig. 1. To this order, the simple first-order Hartree
contribution to the bosonic self-energy in the functional
bosonization approach �the corresponding Feynman diagram
is shown in Fig. 6�a� in Sec. V� is in fermionic language
equivalent to the sum of the three first-order interaction cor-
rections to the irreducible polarization shown in Fig. 2. Func-
tional bosonization thus consistently sums self-energy cor-
rections �diagrams �a� and �b� in Fig. 2� and vertex
corrections �diagram �c� in Fig. 2� of the underlying fermion
problem. Actually, the interpretation of the inverse irreduc-
ible polarization as the self-energy of the effective boson
theory obtained via functional bosonization suggests that one
should always expand the inverse irreducible polarization
��

−1�� ,q� in powers of the relevant small parameter.12,27 Un-
fortunately, it is not consistent to truncate the expansion of

��
−1�� ,q� at the first order in the RPA interaction, so that the

result �q�q3 for the ZS damping obtained in Ref. 12 cannot
be trusted.

In this work, we construct a more systematic expansion of
��

−1�� ,q� in powers of bosonic loops using functional
bosonization. We argue that individual terms are proportional
to p0

2l, where p0=q0 /2kF is the dimensionless range of the
interaction in momentum space and l is the number of
bosonic loop integrations in the corresponding bosonic Feyn-
man diagrams. The propagators in these diagrams are self-
consistently dressed RPA interactions and the vertices are the
symmetrized closed fermion loops mentioned above, con-
structed from self-consistent Hartree Green’s functions. We
keep all terms to order p0

2, i.e., up to one bosonic loop. In
addition to the Hartree-type diagram analyzed in Ref. 12, a
bosonic tadpole diagram and, more importantly, an
Aslamazov-Larkin-type diagram �shown in Fig. 6�b� in Sec.
V� also contribute to this order.

The ZS damping depends crucially on the position in en-
ergy of the collective ZS mode with respect to single-pair
and multipair particle-hole excitations. Within the RPA the
ZS mode is sharp and perturbative corrections to the polar-
ization describe its coupling to multipair excitations,
whereby it can acquire a lifetime. In three dimensions gen-
eral phase-space arguments16 imply that the resulting damp-
ing is very small. In one dimension, an argument due to
Teber7 suggests that the damping of any acoustic collective
mode which overlaps with the two-pair continuum should
vanish as q3 for small q. However, for this argument to be
valid, one should self-consistently calculate the renormalized
energy of the ZS mode and show that it is immersed in the
multipair continuum. This has neither been done in our pre-
vious work12 nor in the work by Pustilnik et al.4 The RPA for
the dynamic structure factor artificially distinguishes be-
tween the ZS energy v0�q� and the energy scale vF�q� associ-
ated with the single-pair continuum �see Sec. III�. We are
now able to show that this distinction disappears once the
corrections to the RPA are self-consistently taken into ac-
count.

We strive for an explicit analytical evaluation of the re-
sulting loop integrations. However, due to the complex alge-
braic structure of the bosonic vertices, we are forced to ap-
proximate the polarization inside the loop integrals by its
limit for a linearized energy dispersion �approximation A in-
troduced in Sec. V B�. We can then show that some remark-
able cancellations between the Hartree and the Aslamazov-
Larkin-type diagrams take place, eliminating the mass-shell
singularities at the noninteracting energy vFq. For an inter-
action with sharp momentum cutoff, we can explicitly evalu-
ate all integrals. A remaining mass-shell singularity at the
interacting energy scale v0q disappears if we use an interac-
tion with a smooth Taylor expansion for small momenta q.
We then find a large intermediate regime qc�q�kF where
indeed �q�q3 / �mqc�. The momentum scale qc is determined
by the momentum dependence of the interaction fq �see Eq.
�2.9� below�. Due to the complexity of the integrations, in
the regime q�qc we have not been able to evaluate our
functional bosonization result for S�� ,q�. However, at q
	qc our expression for �q matches the result �q�q2 /m ob-
tained by several other authors for different model systems

� �

� �
� � � �

= +

= + + +...

FIG. 1. Diagrammatic definition of the screened interaction
within random-phase approximation. The thin wavy line denotes the
bare interaction and the solid arrows represent noninteracting fer-
mionic single-particle Green’s functions.

(a) (b) (c)

+ +

FIG. 2. Corrections to the irreducible polarization in an expan-
sion to first order in powers of the RPA interaction.
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for Luttinger liquids.1,3,4,9 We therefore believe that quite
generally for any model belonging to the Luttinger liquid
universality class the width of the ZS resonance asymptoti-
cally scales as q2 for q→0.

To conclude this section, let us give a brief outline of the
rest of this work. After introducing the FSM explicitly in
Sec. II, we shall discuss the dynamic structure factor within
the RPA in Sec. III; although in this approximation the ZS
mode is not damped, it is still instructive to start from the
RPA because it allows us to understand the origin of the
mass-shell singularities encountered in conventional
bosonization. In Sec. IV, we outline the functional bosoniza-
tion approach to the FSM, which we then use in Sec. V to
derive a self-consistency equation for ��

−1�� ,q� which does
not exhibit any mass-shell singularities. In Sec. VI, we
present an evaluation of this expression for sharp
momentum-transfer cutoff fq= f0��q0− �q��, while in Sec.
VII we consider a general interaction fq. We also present
explicit results for the spectral line shape of S�� ,q� and the
ZS damping. In Sec. VIII, we briefly summarize our main
results and point out some open problems. In the Appendix,
we derive explicit expressions for the symmetrized closed
fermion loops of our forward scattering model and carefully
discuss the symmetrized fermionic three loop and the four
loop which are needed for the calculations in the main part of
this work.

II. FORWARD-SCATTERING MODEL

We consider nonrelativistic spinless fermions interacting
with long-range density-density forces in one spatial dimen-
sion. The Euclidean action of our model is

S�c̄,c� = S0�c̄,c� +
1

2
�

Q

fq	−Q	Q, �2.1�

where the noninteracting part can be written in terms of
Grassmann fields cK and c̄K representing the spinless fermi-
ons,

S0�c̄,c� = − �
K

�i� − 
k + ��c̄KcK. �2.2�

Here, � is the chemical potential and the energy dispersion is
assumed to be quadratic,


k =
k2

2m
. �2.3�

The composite field

	Q = �
K

c̄KcK+Q �2.4�

represents the Fourier components of the density. The collec-
tive label K= �i� ,k� denotes fermionic Matsubara frequen-
cies i� and wave vectors k, while Q= �i�̄ ,q� depends on
bosonic Matsubara frequencies i�̄. The corresponding inte-
gration symbols are �K= ��V�−1��,k and �Q= ��V�−1��̄,q,
where � is the inverse temperature and V is the volume of

the system. Eventually, we shall take the limit of infinite
volume V→� and zero temperature �→�, where �K

=� d�dk
�2��2 and �Q=� d�̄dq

�2��2 . We assume that the Fourier transform
fq of the interaction is suppressed for momentum transfers q
exceeding a certain cutoff q0�kF. For explicit calculations it
is sometimes convenient to use a sharp cutoff,12

fq = f0��q0 − �q�� . �2.5�

However, as will be discussed in detail in Sec. VI, the van-
ishing of all derivatives of fq at q=0 eliminates an important
damping mechanism, so that it is better to work with a more
realistic smooth cutoff, such as a Lorentzian,

fq =
f0

1 + q2/q0
2 . �2.6�

Throughout this work we assume that the momentum-
transfer cutoff q0 �which for Lorentzian interaction can be
identified with the Thomas-Fermi screening wave vector�
satisfies

p0 
q0

2kF
� 1. �2.7�

The precise form of fq is not important for our purpose as
long as for small q we may expand

fq = f0 +
1

2
f0�q

2 + O�q4�, with f0� � 0. �2.8�

By dimensional analysis, we may use the second derivative
f0� of the Fourier transform of the interaction to construct
another momentum scale,

qc =
1

m�f0��
, �2.9�

which will play an important role in this work. Note that for
Lorentzian cutoff f0�=−2f0 /q0

2�0 and qc=q0
2 / �2mf0�, but in

general the momentum scale qc is independent of the
momentum-transfer cutoff q0. We assume that

qc � q0 � kF. �2.10�

For simplicity, we shall refer to the forward scattering model
defined above as the FSM. If we further simplify the FSM by
linearizing the energy dispersion around the two Fermi
points, 
kF+q−
kF

	 vFq, and by extending the linear dis-
persion at each Fermi point to the infinite line −��q��,
then the FSM reduces to the spinless TLM with dimension-
less forward-scattering interactions g̃2= g̃4=g0=�0f0 in
“g-ology” notation.18 In contrast to the TLM, the FSM does
not require ultraviolet regularization because the quadratic
energy dispersion in one dimension renders all loop integra-
tion ultraviolet convergent. Hence the usual problems asso-
ciated with the removal of ultraviolet cutoffs and the associ-
ated anomalies31 simply do not arise in the FSM.

III. RPA FOR THE FORWARD-SCATTERING MODEL

For the TLM, i.e., for a linearized energy dispersion, the
symmetrized closed fermion loops with more than two exter-
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nal legs vanish.25,27,32,33 Hence, in this limit the RPA yields
the exact dynamic structure factor and seems to be a reason-
able starting point for the perturbative calculation of S�� ,q�
in the FSM. However, as we will see below, the position of
the single-pair particle-hole continuum in the RPA is deter-
mined by the bare dispersion relation. It has been proposed
recently that perturbation theory should rather be build on
the so-called random-phase-approximation exchange �RPAE�
or “time-dependent Hartree-Fock approximation” which
takes the renormalization of the single-pair particle-hole con-
tinuum approximately into account.13,15 In this section, we
shall nevertheless carefully work out the spectral line shape
of the FSM using the simple RPA, as this is sufficient to
understand the relation between the mass-shell singularities
and the expansion of the free polarization in powers of 1 /m.
In our subsequent functional bosonization calculation, we
shall self-consistently take the renormalization of the single-
pair particle-hole continuum into account.

Within the RPA, the irreducible polarization is approxi-
mated by the noninteracting one,

���Q� 	 �0�Q� = − �
K

G0�K�G0�K + Q� , �3.1�

where

G0�K� =
1

i� − �k
, �3.2�

with

�k =
k2

2m
−

kF
2

2m
. �3.3�

For �→� and V→� the integrations can be performed ana-
lytically,

�0�Q� = −
1

V
�

k

��− �k� − ��− �k+q�
i� − �k+q + �k

=
m

�q
ln� i�̄ + vFq +

q2

2m

i�̄ + vFq −
q2

2m
� . �3.4�

The corresponding RPA structure factor has been discussed
in Ref. 12. It consists of two contributions,

SRPA��,q� = Zq��� − �q� + SRPA
inc ��,q� , �3.5�

where the first term represents the undamped ZS mode with
weight,

Zq =
vFq2

2��q
Wq, �3.6�

and energy,34

�q = vF�q�
1 +
q

kF
coth� q

kFg0
� + � q

2kF
�2

= v0�q��1 +
g0�4 + 3g0�

6x0
2 � q

2kFg0
�2

+ O�q4�� . �3.7�

The dimensionless function

Wq =
� q

kFg0
�2

sinh2� q

kFg0
� �3.8�

yields the relative contribution of the ZS peak to the f-sum
rule,12

�
0

�

d��S��,q� =
vFq2

2�
. �3.9�

The second part SRPA
inc �� ,q� in Eq. �3.5� represents the inco-

herent continuum due to excitations involving a single-
particle-hole pair �single-pair continuum�.35 The regime in
the �-q plane where SRPA�� ,q� is finite is shown in Fig. 3.
The corresponding qualitative shape of SRPA�� ,q� for fixed
q�kF is shown in Fig. 4. The ZS mode never touches the
single-pair continuum. Consequently, there is no Landau
damping and within RPA the ZS mode is undamped. Broad-
ening of the ZS mode is due to multipair excitations ne-
glected in RPA. In the limit g0→0 the ZS mode disappears
and the incoherent part SRPA

inc �� ,q� reduces to the dynamic
structure factor of the free Fermi gas, which for q�2kF is
simply a box function of width q2 /m centered around vF�q�,

q2

2m

q2

2m

ω

qk /2Fg00

v q+

F
v q−

F
single pair continuum

v q
F

ZS

v q0

FIG. 3. �Color online� Regime in the �-q plane where
SRPA�� ,q� is finite. The shaded region represents the single-pair
particle-hole continuum, while the thick line corresponds to the ZS
mode. For weak interaction g0�1 the linear approximation �q

	v0�q� to the dispersion of the ZS mode crosses the upper boundary
of the single-pair continuum at q	g0kF /2. However, the nonlinear
corrections to the ZS dispersion �3.7� are such that it never inter-
sects the single-pair continuum, so that there is no Landau damping.
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S0��,q� = lim
g0→0

SRPA
inc ��,q� =

m

2��q�
�� q2

2m
− �� − vF�q��� .

�3.10�

For finite g0, the shape of SRPA
inc �� ,q� is modified as shown

quantitatively in Fig. 1 of Ref. 12. The small shaded hump in
Fig. 4 represents schematically the incoherent part of
SRPA�� ,q� for finite g0. For �q� /kF�g0, the relative weight of
the single-pair continuum is negligibly small, so that the ZS
peak carries most of the spectral weight. The relative contri-
bution of the single-pair continuum to the f-sum rule van-
ishes as �q /g0kF�2�1.

It is instructive to see which features of SRPA�� ,q� are
recovered if we expand the inverse noninteracting polariza-
tion �0

−1�Q� in powers of the inverse mass m−1. To this end
we introduce the dimensionless variables,

iy =
i�

vFq
, p =

q

2kF
, �3.11�

and rewrite Eq. �3.4� as

�0�i�,q� = �0�̃0�iy,p� , �3.12�

with the dimensionless function

�̃0�iy,p� =
1

2p
ln� iy + 1 + p

iy + 1 − p
� =

1

4p
ln� y2 + �1 + p�2

y2 + �1 − p�2� .

�3.13�

For an interaction with momentum-transfer cutoff q0�kF the
relevant dimensionless momenta satisfy �p��1, so that we

expand �̃0
−1�iy , p� in powers of p. From Eq. �3.13� we find

�̃0
−1�iy,p� = 1 + y2 −

p2

3

1 − 3y2

1 + y2 + O�p4� . �3.14�

For later reference, we note that the correction of order p2 in
Eq. �3.14� can be written as

−
p2

3

1 − 3y2

�1 + y2�
= p2 −

2p2

3
� 1

1 − iy
+

1

1 + iy
� . �3.15�

For p→0 we recover the result for linearized dispersion,

lim
p→0

�̃0
−1�iy,p�  �̃0

−1�iy� = 1 + y2, �3.16�

which yields the dynamic structure factor of the TLM given
in Eq. �1.2�. However, after analytic continuation to real fre-
quencies iy→x+ i0= �

vFq + i0, the correction term of order p2

in expansion �3.14� is singular on the mass shell ���=vF�q�.
Although in the noninteracting limit we know that this mass-
shell singularity has been artificially generated by expanding
the logarithm in Eq. �3.13�, it is not clear how to regularize a
similar singularity in the interacting system. Therefore, a for-
mal expansion in powers of the band curvature 1 /m using
either a purely fermionic approach7 or conventional
bosonization14 is not reliable close to the mass shell after
analytic continuation. In contrast, the functional bosonization
approach contains the correct free polarization in the nonin-
teracting limit.

It is instructive to examine the RPA dynamic structure
factor if we nevertheless use expansion �3.14� for the nonin-
teracting polarization. Then we obtain after analytic continu-
ation iy→x+ i0=� / �vFq�+ i0 for small �q��g0kF,

SRPA��,q� 	
�0

�
Im� 1

g0 + �̃0
−1�x + i0,p�

�
= Zq

+��� − �̃q
+� + Zq

−��� − �̃q
−� , �3.17�

where Zq
+ and �̃q

+ reduce for small q to the corresponding
expressions Zq and v0�q� for linear dispersion �see Eq. �1.4��,
and the weight and dispersion of the other mode �̃q

− are for
�q��kFg0,

Zq
− 	

2�q�
3�

� q

2kFg0
�2

, �3.18�

�̃q
− 	 vF�q��1 −

2

3g0
� q

2kF
�2� . �3.19�

This peak is associated with the incoherent part SRPA
inc �� ,q� of

the dynamic structure factor discussed above, which in ap-
proximation �3.14� is replaced by a single peak with the
same weight. From Eqs. �3.18� and �1.4� one easily verifies
that for �q��g0kF the relative weight of the peak associated
with the incoherent part is indeed small,

Zq
−

Zq
+ =

4x0

3
� q

2kFg0
�2

=
4�2x0p0

2

3
� vFq

f0q0
�2

, �3.20�

where we have used p0=q0 / �2kF� �see Eq. �2.7��. Hence, for
�q��g0kF most of the weight of SRPA�� ,q� is carried by the
ZS mode �̃q

+	v0�q�, so that the incoherent part correspond-
ing to the mode �̃q

−	vF�q� can be neglected.12 Note that the
limits q→0 and g0→0 do not commute and that only for
�q� / �2kF��g0 the weight of the mode �̃q

− can be neglected.
Mathematically, the second peak in Eq. �3.17� is due to

the pole arising from the term of order p2 in expansion �3.14�
of the inverse free polarization. Although after analytic con-
tinuation iy→x+ i0 this term is singular for x=1, we know
from the exact result �Eq. �3.13�� how this singularity should
be regularized: we simply should smooth out the correspond-
ing �-function peak over an interval of width wq�q2 /m. In

1

q/kF

g /2
0

S
RPA

ωv /vF /v q
F

ZS

continuum
single pair

0

(q/k )F
2

FIG. 4. �Color online� Schematic behavior of SRPA�� ,q� for
fixed q as a function of � for q /kF�g0�1. In this regime, the
distance between the upper edge of the single-pair particle-hole
continuum and the position of the ZS peak �indicated by a thick
arrow� is much larger than the width of the particle-hole continuum.
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fact, we can self-consistently calculate wq by noting that af-
ter analytic continuation the singular term in expansion
�3.14� gives rise to the following formally infinite imaginary
part of the inverse noninteracting polarization:

Im �̃0
−1�x + i0,p� = − �0�x,p� = −

2�

3
p2���1 − x� − ��1 + x�� .

�3.21�

Ignoring the renormalization arising from the �singular� real

part of �̃0
−1�x+ i0, p� and approximating the resulting dy-

namic structure factor in this regime by a Lorentzian cen-
tered at �=vF�q�, we find for the full width at half maximum
in the limit g0�1,

wq =
vF�q�

2
�0�1,p = q/�2kF�� . �3.22�

To obtain a self-consistent estimate for wq we follow
Samokhin1 and regularize the singularity in �0�1, p� by re-
placing ���=0� by the height of a normalized Lorentzian of
width wq on resonance,

���x − 1��x=1 = vF�q����� − vF�q����=vF�q� →
vF�q�
�wq

.

�3.23�

Hence, our self-consistent regularization is

�0�1,p� →
2p2vF�q�

3wq
. �3.24�

Substituting this into Eq. �3.22� we obtain the self-
consistency equation,

wq =
1

3
� q

2kF
�2 �vFq�2

wq
, �3.25�

which leads to the following estimate for the width of the
single-pair particle-hole continuum:

wq =
1

2
3

q2

m
. �3.26�

It has recently been shown4,9,10 that the shape of the single-
pair continuum cannot be approximated by a Lorentzian, but
the order of magnitude of its width obtained within the above
regularization is correct for sufficiently small q. Hence, the
mass-shell singularity arising after analytic continuation
iy→x+ i0 in the expansion of the inverse noninteracting po-
larization �3.14� in powers of p=q / �2kF� is simply related to
the single-pair particle-hole continuum. This singularity can
be regularized by smearing out the � function in the imagi-
nary part over a finite interval of width wq�q2 /m. However,
the width wq should not be confused with the damping of the
ZS mode, which remains sharp within RPA.

IV. FUNCTIONAL BOSONIZATION

In this section we review the functional bosonization
approach25–27 which we use in Sec. V to calculate the dy-

namic structure factor. In contrast to previous work, we keep
track of Hartree corrections to the fermionic self-energy,
since these corrections contribute to the renormalization of
the ZS velocity.

Decoupling the density-density interaction in Eq. �2.1� by
means of a real Hubbard-Stratonovich field �, the ratio of the
partition functions with and without interaction can be writ-
ten as

Z
Z0

=
� D�c̄,c,��e−S0�c̄,c�−S0���−S1�c̄,c,��

� D�c̄,c,��e−S0�c̄,c�−S0���

, �4.1�

where the free fermionic action S0�c̄ ,c� is given in Eq. �2.2�,
the free bosonic part is

S0��� =
1

2
�

Q

fq
−1�−Q�Q, �4.2�

and the Fermi-Bose interaction is

S1�c̄,c,�� = i�
Q
�

K

c̄K+QcK�Q. �4.3�

The fermionic part of the action in the numerator of Eq. �4.1�
can be written as

S0�c̄,c� + S1�c̄,c,�� = − �
K
�

K�
c̄K�G−1�KK�cK�, �4.4�

where the infinite matrix G−1 is defined by

�G−1�KK� = �K,K��i� − 
k + �� − i�K−K�. �4.5�

At finite density, the field �K has a nonzero expectation
value,

�Q = − i�Q,0�̄ + ��Q, �4.6�

where � symbol is given by �Q,0=�V��̄,0�q,0, which reduces
to �2��2���̄���q� for �→� and V→�. We fix the real con-
stant �̄ from the requirement that the effective action Seff���
of the � field, which is obtained by integrating over the
fermionic fields in Eq. �4.1�, does not contain a term linear in
the fluctuation ��Q. To do this, we define the matrix G0

−1

which includes the self-energy correction due to the vacuum
expectation value �̄,

�G0
−1�KK� = �K,K��i� − 
k − �̄ + �� , �4.7�

and write

G−1 = G0
−1 − V , �4.8�

with

�V�KK� = i��K−K�. �4.9�

Integrating in Eq. �4.1� over the fermion fields, we obtain the
formally exact expression,
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Z
Z0

= e−���1−�0�
� D����e−Seff����

� D���e−S0���

, �4.10�

where �1−�0 is the change in the grand canonical potential
due to the vacuum expectation value ignoring fluctuations,

�1 − �0 =
1

�
Tr ln�G0��̄�G0

−1��̄ = 0�� − V
�̄2

2f0
. �4.11�

The effective action for the fluctuations of the bosonic field
is

Seff���� = S0��Q → − i�Q,0�̄ + ��Q�

− �V
�̄2

2f0
− Tr ln�1 − G0V�

=
1

2
�

Q

fq
−1��−Q��Q − if0

−1�̄��0 + �
n=1

�
Tr�G0V�n

n
.

�4.12�

We now fix the vacuum expectation value �̄ from the saddle-
point condition

��1

��̄
= − V

�̄

f0
+ V	0 = 0 �4.13�

or equivalently

�̄ = f0	0. �4.14�

Here, 	0 is the density and G0�K� the fermionic Green’s
function in self-consistent Hartree approximation, i.e.,

	0 = �
K

G0�K� =
1

V
�

k

��� − 
k − f0	0� , �4.15�

G0�K� =
1

i� − 
k − f0	0 + �
. �4.16�

Note that Eq. �4.16� agrees with Eq. �3.2� if we take into
account that within self-consistent Hartree approximation the
Fermi momentum kF is defined via

kF
2

2m
= � − f0	0. �4.17�

Equation �4.13� guarantees that the terms linear in the fluc-
tuations ��Q in Eq. �4.12� cancel, so that our final result for
the effective action for the fluctuations of the Hubbard-
Stratonovich field is

Seff���� =
1

2
�

Q

fq
−1��−Q��Q + �

n=2

�
Tr�G0V�n

n

= S2���� + Sint���� , �4.18�

with the Gaussian part given by

S2���� =
1

2
�

Q

�fq
−1 + �0�Q����−Q��Q �4.19�

and the interaction part by

Sint���� = �
n=3

�
1

n!
�

Q1

¯�
Qn

�Q1+¯+Qn,0

��0
�n��Q1, . . . ,Qn���Q1

¯ ��Qn
. �4.20�

The vertices �0
�n��Q1 , . . . ,Qn� are proportional to the symme-

trized closed fermion loops LS
�n��Q1 , . . . ,Qn� defined in Eqs.

�A1� and �A2�,

�0
�n��Q1, . . . ,Qn� = in�n − 1� ! LS

�n��− Q1, . . . ,− Qn� .

�4.21�

A graphical representation of �0
�n��Q1 , . . . ,Qn� is shown in

Fig. 5.
The irreducible polarization can now be obtained from the

fluctuation propagator of the Hubbard-Stratonovich field,

���Q��Q�� =
� D����e−Seff������Q��Q�

� D����e−Seff����

= �Q+Q�,0
1

fq
−1 + ���Q�

, �4.22�

where the effective action Seff���� is defined in Eq. �4.18�.
Within the Gaussian approximation this reduces to the RPA
interaction,

���Q��Q��S2
= �Q+Q�,0

1

fq
−1 + �0�Q�

 �Q+Q�,0fRPA�Q� .

�4.23�

The corrections to the RPA can now be calculated systemati-
cally in powers of the interaction Sint using the Wick theo-
rem. The RPA interaction thereby plays the role of the
Gaussian propagator, so that we naturally obtain an expan-
sion in powers of the RPA interaction. In Appendix, we give
explicit expressions for the symmetrized n loops of the FSM

�Refs. 28–30� and show that LS
�n���0 / �mvF

2�n−2L̃S
�n�, where

P(n)
P(1)

P(2)

P(3)

P
Σ

1

2

3

n

= i
n

n

FIG. 5. Boson vertex with n external legs in the interaction part
Sint���� of the bosonized effective action �see Eq. �4.20��. The ar-
rows denote the fermionic Green’s functions G0�K� within self-
consistent Hartree approximation �see Eq. �4.16��. The sum is taken
over the n! permutations of the labels of the external legs. For
linearized energy dispersion all symmetrized closed fermion loops
with more than two external legs vanish.
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L̃S
�n� is dimensionless. Re-expressing all terms of the pertur-

bation theory through the dimensionless quantities defined in
Eqs. �3.11�, �3.12�, and �A11�, it is straightforward to see that
each bosonic loop contributes an integration of the form
�dy dp�p�. As the interactions are dominated by dimension-
less momenta p� p0, each loop integration is roughly pro-
portional to p0

2. An expansion in the number of bosonic loops
thus creates a �formal� expansion in powers of the range of
the interaction p0=q0 /2kF. In the limit of vanishing interac-
tion we recover the exact noninteracting polarization
�0�i� ,q� for quadratic energy dispersion. Our approach
based on functional bosonization is therefore fundamentally
different from conventional bosonization,1,7,14 where the qua-
dratic term in the energy dispersion gives rise to a cubic
vertex proportional to 1 /m which has to be resummed to
infinite order to recover the correct noninteracting polariza-
tion.

V. CALCULATION OF S(� ,q) USING FUNCTIONAL
BOSONIZATION

A. One-loop self-consistency equation for ��(Q)

The diagrams contributing to ���Q� up to second order in
the RPA interaction are shown in Fig. 6. As shown above,
individual terms in the perturbation expansion are propor-
tional to p0

2l, where l is the number of bosonic loops. Thus
the two-loop diagram �d� in Fig. 2 is of higher order and will
be neglected in our calculation up to order p0

2. Evaluating the
diagrams �a�–�c� in Fig. 6 we obtain the following expression
for the irreducible polarization:

���Q� 	 �0�Q� −
1

2
�

Q�
fRPA�Q���6LS

�4��Q�,− Q�,Q,− Q�

+ 4fRPA�0�LS
�3��Q,− Q,0�LS

�3��Q�,− Q�,0�

+ 4fRPA�Q + Q��LS
�3��− Q,Q + Q�,− Q��

�LS
�3��Q�,− Q − Q�,Q�� . �5.1�

The properties of the symmetrized three and four loops ap-
pearing in this expression are discussed in detail in the Ap-
pendix.

It turns out, however, that in order to cure the unphysical
features of the RPA discussed at the end of Sec. III �in par-
ticular, within RPA the energy scale vF�q� of the single-pair
continuum erroneously involves the bare Fermi velocity�, we
should self-consistently dress the Gaussian propagator
fRPA�Q� in Eq. �5.1� by self-energy corrections. Formally,
this amounts to replacing the RPA interaction by the exact
effective interaction,

fRPA�Q� → f��Q� =
fq

1 + fq���Q�
. �5.2�

With this substitution, Eq. �5.1� becomes an integral equation
for the irreducible polarization, which cannot be solved ana-
lytically. Fortunately, this problem can be simplified by not-
ing that on the right-hand side it is not necessary to retain the
full Q dependence of ���Q� but to keep only those terms
which contribute to the self-consistent renormalization of the

ZS velocity. To explain this, let us introduce again the di-
mensionless variables iy= i� / �vFq� and p=q / �2kF� and de-
fine the dimensionless irreducible polarization,

���i�,q� = �0�̃��iy,p� . �5.3�

The corresponding dimensionless effective interaction is then

f̃��iy,p� =
gp

1 + gp�̃��iy,p�
, �5.4�

where gp=�0fq=2pkF
�see also Eqs. �3.11� and �3.12��. The

dynamic structure factor can then be written as

S��,q� =
1

�
Im� 1

fq + ��
−1�� + i0,q��

=
�0

�
Im� 1

gp + �̃�
−1�x + i0,p�

� , �5.5�

where x=� / �vFq�. For our purpose it is now sufficient to
approximate the dimensionless inverse irreducible polariza-
tion by

�̃�
−1�iy,p� = Z1 + Z2y2, �5.6�

where the dimensionless renormalization factors Z1 and Z2
should be determined as a function of the interaction such
that approximation �5.6� yields the true ZS velocity v. Within
RPA, where the nonlinear terms in the energy dispersion do
not renormalize the ZS velocity, the irreducible polarization
is approximated by the noninteracting one, so that Z1=Z2
=1. If we approximate the inverse polarization in Eq. �5.5�
by Eq. �5.6� we obtain for ��0 and q→0

S��,q� 	
vF�q�

2�vZ2
��� − v�q�� , �5.7�

where the renormalized ZS velocity is

(a) (b)

(d)(c)

FIG. 6. Diagrams arising in the perturbative expansion of the
irreducible polarization to second order in the RPA interaction. The
shaded circles represent the vertices of Seff����, which are related
to symmetrized closed fermion loops as defined in Fig. 5. Diagram
�a� is equivalent to the three fermionic diagrams shown in Fig. 2.
Diagram �b� is the so-called Aslamazov-Larkin diagram, while dia-
gram �c� can be viewed as a higher-order self-energy correction
which renormalizes the relation between density and chemical po-
tential. Diagram �d� involving two bosonic loops and the symme-
trized fermionic six loop is of fourth order in p0=q0 / �2kF� and can
be neglected to order p0

2.
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v
vF

=
Z1 + g0

Z2
 x0  
1 + g , �5.8�

with renormalized coupling constant

g =
g0 + Z1

Z2
− 1. �5.9�

In order to avoid the unphysical splitting of the spectral
weight in S�� ,q� �as discussed at the end of Sec. III, this is
an artifact of the RPA�, it is crucial that the true ZS velocity
v appears in the bosonic propagators. Therefore, a naive ex-
pansion in powers of the RPA interaction is not sufficient.
However, we may further reduce the complexity of the cal-
culation by noting that Eq. �5.7� still contains the correct
velocity if we set Z2→1 in the prefactor. Within this ap-
proximation, the velocity renormalization implied by Eq.
�5.6� can be simply taken into account via a redefinition of
the coupling constant, g0→g. It is therefore sufficient to re-
place the RPA interaction in Eq. �5.1� by an effective inter-
action of the same form but with a renormalized effective
coupling g instead of g0, which should be chosen such that
all interaction corrections to the ZS velocity are self-
consistently taken into account. Note that Schönhammer13

recently showed that within the so-called RPAE �which
amounts to solving the Bethe-Salpeter equation with the bare
interaction as irreducible vertex� the relative position of the
collective-mode energy and the energy of the single-pair
particle-hole continuum is different from the RPA prediction
for the FSM: In RPAE the ZS mode lies above the noninter-
acting single-particle-hole continuum which �erroneously�
appears in RPA, but below the Hartree-Fock particle-hole
continuum. This suggests that in order to obtain a correct
estimate of the ZS damping, it is necessary to calculate the
location of the ZS energy self-consistently.

In field-theoretical language the constants Z1 and Z2 are
counterterms which guarantee that our Gaussian propagator
depends on the true ZS velocity. In Sec. VI we shall explic-
itly calculate the factors Z1 and Z2 and the corresponding
renormalized ZS velocity v to second order in our small
parameter p0. A similar procedure is necessary to self-
consistently calculate the true Fermi surface of an interacting
Fermi system.36,37 The expansion of the modified dimension-
less interaction g̃p for small p is then

g̃p = g +
1

2
g0�p2 + O�p4� , �5.10�

where

g0� = �2kF�2�0f0� = sgn f0�
2

�pc
. �5.11�

In this approximation, our dimensionless effective interac-
tion is

f̃��iy,p� 	 f̃ g�iy,p� =
g̃p

1 + g̃p�̃0�iy,p�
, �5.12�

which differs from the RPA interaction because the function
g̃p includes the renormalization of the ZS velocity due to
fluctuations beyond the RPA.

Collecting all terms, our final result for the dimensionless
irreducible polarization to one bosonic loop can be written as

�̃��iy,p� 	 �̃0�iy,p� + �̃1�iy,p� + �̃2�iy,p� , �5.13�

where the noninteracting polarization is given in Eq. �3.13�,
and the subscripts indicate the powers of g̃p. The term

�̃1�iy , p� corresponding to diagram �a� in Fig. 6 can be writ-
ten as

�̃1�iy,p� = − �
−�

�

dp��p���
−�

� dy�

2�
f̃ g�iy�,p��L̃S

�4��iy,p,iy�,p�� ,

�5.14�

where the dimensionless symmetrized four loop

L̃S
�4��iy , p , iy� , p�� is defined in Eq. �A19�. The term �̃2�iy , p�

involving two powers of the effective interaction is of the
form

�̃2�iy,p� = �̃2
AL�iy,p� + �̃2

H�iy,p� , �5.15�

where the contribution from the Aslamasov-Larkin �AL� dia-
gram in Fig. 6�b� is

�̃2
AL�iy,p� = − �

−�

�

dp��p���
−�

� dy�

2�
f̃ g�iy�,p��

� f̃ g� iyp + iy�p�

p + p�
,p + p���L̃S

�3��iy,p,iy�,p���2,

�5.16�

and the contribution from the Hartree diagram in Fig. 6�c�
can be written as

�̃2
H�iy,p� = −

g

1 + g
L̃S

�3��iy,p,iy,− p��
−�

�

dp��p���
−�

� dy�

2�

� f̃ g�iy�,p��L̃S
�3��iy�,p�,iy�,− p�� . �5.17�

Here, the dimensionless symmetrized three loop

L̃S
�3��iy , p , iy� , p�� is defined in Eq. �A13�. The parameters Z1

and Z2 hidden in the effective interaction f̃ g�iy , p� should be
determined self-consistently by evaluating Eqs. �5.13�–�5.17�
and demanding that the resulting renormalized ZS velocity is
consistent with the result obtained from Eq. �5.6�.

B. Approximation A: neglecting 1 Õm corrections
to �0(Q) in loop integrations

Equations �5.14�–�5.17� are still too complicated to admit
an analytic evaluation. In order to explicitly calculate the
dynamic structure factor without resorting to elaborate nu-
merics, we shall further simplify the above expressions by
making the following approximation A: We replace the non-
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interacting polarization �0�Q� appearing in the effective in-
teraction and the symmetrized closed fermion loops on the
right-hand sides of Eqs. �5.14�–�5.17� by its asymptotic limit
for small momenta given in Eq. �3.16�. Keeping in mind that
in one dimension the closed fermion loops with n�2 exter-
nal legs can all be expressed in terms of �0�Q�, the symme-
trized three and four loops are then approximated by Eqs.
�A17� and �A23�. For consistency, we should also expand the

dimensionless free polarization �̃0�iy , p� on the right-hand
side of Eq. �5.13� to second order in p �see Eq. �3.14��. We
shall argue below that above approximation A is not suffi-
cient to calculate the line shape of the dynamic structure
factor for momenta q�qc=1 / �m�f0��� �see Eq. �2.9�� because
in this regime the spectral line shape is dominated by the
terms neglected in approximation A. On the other hand, for
q�qc the line shape of S�� ,q� is essentially determined by
the quadratic term in the expansion of fq for small q, so that
in this regime approximation A is justified.

It turns out that with this simplification the y� integrations
in Eqs. �5.14�, �5.16�, and �5.17� can be done analytically for
general g̃p using the method of residues. The form of Eq.
�5.5� suggests that it is natural to expand the inverse irreduc-
ible polarization in powers of p and p0. This procedure can

be formally justified within functional bosonization,12,27

where the interaction corrections to the inverse irreducible
polarization play the role of the self-energy corrections in the
effective bosonized theory. Using Eqs. �3.14� and �5.14�–
�5.17� we obtain to order p0

2,

�̃�
−1�iy,p� = 1 + y2 −

p2

3

1 − 3y2

1 + y2 − �1 + y2�2�̃1�iy,p�

− �1 + y2�2�̃2�iy,p� + O�p0
3� , �5.18�

where p is assumed to be smaller than the dimensionless
momentum-transfer cutoff p0=q0 / �2kF�. It is convenient to
introduce the notation

xp = 
1 + g̃p, �5.19a�

ap = xp + 1 = 
1 + g̃p + 1, �5.19b�

bp = xp − 1 = 
1 + g̃p − 1, �5.19c�

so that apbp= g̃p. The contribution involving the symmetrized
four loop can then be written as

− �1 + y2�2�̃1�iy,p� = Re �
0

�

dp�� �p��
xp�

p�4F1�iy,p�� + p�2p2F2�iy,p�� + p4F3�iy,p��
�ap�

2 p�2 − �1 + iy�2p2��bp�
2 p�2 − �1 − iy�2p2�

− p�2g̃p��1 + iy�2� 2p�

p�1 − iy�
+ 1� �p + p��

xp�
2 p�2 − ��1 − iy�p + p��2

+ �p� → − p��� , �5.20�

with

F1�iy,p� = 4g̃p�xp + iy�2 + g̃p
2� 8xp

1 − iy
− 4xp − g̃p

− �2 + xp −
g̃p

2
��1 + y2�� , �5.21�

F2�iy,p� = g̃p�− �1 + iy�4 + g̃p�2 − y2 + y4� − 4bpiy�1 − y2��

− 2bp
2xp

1 + iy

1 − iy
�3 − 6y2 − y4� , �5.22�

F3�iy,p� = − 4bp
2�1 + y2��1 −

1 + y2

2
−

�1 + y2�2

8
� .

�5.23�

Both functions F1�iy , p� and F2�iy , p� contain a singular term
proportional to �1− iy�−1, which after analytic continuation
give rise to a mass-shell singularity at the energies vFq
associated with the bare Fermi velocity. Fortunately, these
singularities cancel when Eq. �5.20� is combined with the
corresponding contributions from the expansion of

�̃0
−1�iy , p� in Eq. �5.18� and from the AL diagram given in

Eq. �5.30� below. To show this explicitly, it is useful to iso-
late the singular term in Eqs. �5.21� and �5.22� by setting

F1�iy,p� =
8g̃p

2xp

1 − iy
+ F̃1�iy,p� , �5.24�

F2�iy,p� = − 8bp
2xp

�1 + iy�2

1 − iy
+ F̃2�iy,p� . �5.25�

F̃1�iy , p� and F̃2�iy , p� are now analytic functions of y,

F̃1�iy,p� = 4g̃p�xp + iy�2

− g̃p
2�4xp + g̃p + �2 + xp −

g̃p

2
��1 + y2�� ,

�5.26�

F̃2�iy,p� = g̃p�− �1 + iy�4 + g̃p�2 − y2 + y4� + 4bpiy�1 + 2iy

+ y2�� + 2bp
2�1 + iy��xp�1 + iy��1 + y2� − 4iy� .

�5.27�

Equation �5.20� can then be written as
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− �1 + y2�2�̃1�iy,p� = Re �
0

�

dp�� �p��
xp�

p�4F̃1�iy,p�� + p�2p2F̃2�iy,p�� + p4F3�iy,p��
�ap�

2 p�2 − �1 + iy�2p2��bp�
2 p�2 − �1 − iy�2p2�

+
8�p��
1 − iy

+
8�p��p2�1 − iy�

bp�
2 p�2 − �1 − iy�2p2

− p�2g̃p��1 + iy�2� 2p�

p�1 − iy�
+ 1� �p� + p�

xp�
2 p�2 − �p� + �1 − iy�p�2

+ �p� → − p��� . �5.28�

Next, consider the contribution �̃2
AL�iy , p� from the Aslamasov-Larkin diagram in Eq. �5.16�. Adopting again approximation

A, the symmetrized three loop L̃S
�3��iy , p , iy� , p�� is replaced by its limit L̃S,0

�3��iy , iy� , p / p�� for 1 /m→0 given in Eq. �A17�.
Then we obtain

− �1 + y2�2�̃2
AL�iy,p� = �

−�

�

dp��p��g̃p�g̃p�+p�
−�

� dy�

2�

�1 − yy� − �y + y��
py + p�y�

p + p�
�2

�1 + y�2��xp�
2 + y�2��1 + � py + p�y�

p + p�
�2��xp�+p

2 + � py + p�y�

p + p�
�2� .

�5.29�

The y� integration can now be carried out using the method of residues. The result can be cast into the following form:

− �1 + y2�2�̃2
AL�iy,p� = Re �

0

�

dp�p�
�p� + p�

2 � g̃p�+p�p� + p���p� + p��1 + 2iyxp� + xp�
2 � − p�y2 + xp�

2 ��2

xp���p� + p�2 − �xp�p� + iyp�2��xp�+p
2 �p� + p�2 − �xp�p� + iyp�2�

+
g̃p�p��p��1 + 2iyxp�+p + xp�+p

2 � + p�y2 + xp�+p
2 ��2

xp�+p�p�2 − �xp�+p�p� + p� − iyp�2��xp�
2 p�2 − �xp+p��p + p�� − iyp�2�

− � 2�p� + p�
p�1 − iy�

− 1� g̃p�+p�p� + p��1 + iy�2

xp�+p
2 �p� + p�2 − �p� + p − �1 − iy�p�2

+ � 2p�

p�1 − iy�
+ 1� g̃p�p��1 + iy�2

xp�
2 p�2 − �p� + �1 − iy�p�2�

+ �p → − p� . �5.30�

Finally, contribution �5.17� of the Hartree-type of diagram
�c� in Fig. 6 is38

− �1 + y2�2�̃2
H�iy,p� = IH�1 − y2� , �5.31�

with

IH = −
2g

1 + g
�

0

�

dpp� 1 +
g̃p

2


1 + g̃p

− 1�
= −

g

1 + g
�

0

�

dpp
�xp − 1�2

xp
. �5.32�

For �-function cutoff this reduces to

IH = −
p0

2g

1 + g
� 1 +

g

2

1 + g

− 1� , �5.33�

while for Lorentzian cutoff,

IH = −
p0

2g

1 + g
�1 +

g

2
− 
1 + g� . �5.34�

Combining all terms we obtain the following expansion of
the inverse irreducible polarization to second order in p0

2:

�̃�
−1�iy,p� = 1 + y2 + p2 −

2p2

3
� 1

1 − iy
+

1

1 + iy
� + IH�1 − y2�

+ I�iy,p� + O�p0
3� , �5.35�

where we have used Eqs. �3.14� and �3.15� to clearly exhibit
the mass-shell singularity generated by the expansion of the
inverse free polarization. The dimensionless integral I�iy , p�
can be written as

I�iy,p� =
1

2
�

0

�

dp�p��J�iy,p,p�� + J�− iy,p,p��� ,

�5.36�

where the complex function J�iy , p , p�� is given by
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J�iy,p,p�� =
p�4F̃1�iy,p�� + p�2p2F̃2�iy,p�� + p4F3�iy,p��

xp��ap�
2 p�2 − �1 + iy�2p2��bp�

2 p�2 − �1 − iy�2p2�
+

8

1 − iy
+

8p2�1 − iy�
bp�

2 p�2 − �1 − iy�2p2

+
�p� + p�

2 � g̃p�+p�p� + p���p� + p��1 + 2iyxp� + xp�
2 � − p�y2 + xp�

2 ��2

xp���p� + p�2 − �xp�p� + iyp�2��xp�+p
2 �p� + p�2 − �xp�p� + iyp�2�

+
g̃p�p��p��1 + 2iyxp�+p + xp�+p

2 � + p�y2 + xp�+p
2 ��2

xp�+p�p�2 − �xp�+p�p� + p� − iyp�2��xp�
2 p�2 − �xp+p��p + p�� − iyp�2�

− � 2�p� + p�
p�1 − iy�

− 1� g̃p�+p�p� + p��1 + iy�2

xp�+p
2 �p� + p�2 − �p� + p − �1 − iy�p�2

− � 2p�

p�1 − iy�
+ 1� g̃p�p��1 + iy�2

xp�
2 p�2 − �p� + �1 − iy�p�2�

+ �p → − p� . �5.37�

Although it is not obvious from Eq. �5.37�, the function
J�iy , p , p�� vanishes as g̃p�

2 for p�� p0, so that integral �5.36�
is ultraviolet convergent as long as g̃p vanishes faster than
1 / p for p→�.

C. Cancellation of the mass-shell singularities at �= ±vFq

We now show that the mass-shell singularities at iy→x
= 1 �corresponding to frequencies �= vFq� arising from
the expansion of the noninteracting polarization in Eq. �5.35�
are exactly cancelled by corresponding singularities in I�x , p�
because for x→ 1 the integral I�x , p� diverges as

I�x,p� �
2p2

3

1

1 � x
, x →  1. �5.38�

To proof this, it is sufficient to calculate the residues

R�p� = lim
x→1

��1 � x�I�x,p��

=
1

2
�

0

�

dp�p� lim
x→1

��1 � x�J�x,p,p��� .

�5.39�

Using xp
2 −1= g̃p we find from Eq. �5.37�,

lim
x→1

��1 � x�J�x,p,p��� = 8 − 4
�p� + p� − �p� − p�

p

= 8���p� − p���1 − p�/�p�� .

�5.40�

Hence,

R�p� = 4�
0

�p�

dp�p��1 − p�/�p�� =
2p2

3
, �5.41�

which proofs Eq. �5.38�. We conclude that expansion �5.35�
of the inverse irreducible polarization to second order in p0

2

does not exhibit any mass-shell singularities at frequencies
�= vFq corresponding to the excitation energy of nonin-

teracting particle-hole pairs. This cancellation also corrects
the unphysical feature of the RPA that the single-pair
particle-hole continuum is centered at the energy vF�q� in-
volving the bare Fermi velocity vF.

It is convenient to explicitly cancel the mass-shell singu-
larities arising from the expansion of the free polarization in
Eq. �5.35� against the corresponding singularities in I�iy , p�.
Therefore we use the identity

2p2

3
� 1

1 − iy
+

1

1 + iy
� =

1

2
�

0

�

dp�p��J0�iy,p,p��

+ J0�− iy,p,p��� , �5.42�

where

J0�iy,p,p�� =
8

1 − iy
�1 −

p� + p + �p� + p�
2p

+ �p → − p�� ,

�5.43�

to write Eq. �5.35� as follows:

�̃�
−1�iy,p� = 1 + y2 + p2 + IH�1 − y2� + Ĩ�iy,p� + O�p0

3� .

�5.44�

The integral Ĩ�iy , p� can again be written as

Ĩ�iy,p� =
1

2
�

0

�

dp�p��J̃�iy,p,p�� + J̃�− iy,p,p��� ,

�5.45�

with

J̃�iy,p,p�� = J�iy,p,p�� − J0�iy,p,p�� . �5.46�

We may now explicitly cancel the mass-shell singularities in

the regularized integrand J̃�iy , p , p�� and obtain after some
algebra,
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J̃�iy,p,p�� =
p�4F̃1�iy,p�� + p�2p2F̃2�iy,p�� + p4F3�iy,p��

xp��ap�
2 p�2 − �1 + iy�2p2��bp�

2 p�2 − �1 − iy�2p2�
+

8p2�1 − iy�
bp�

2 p�2 − �1 − iy�2p2

+
g̃p�+p�p� + p�2��p� + p��1 + 2iyxp� + xp�

2 � − p�y2 + xp�
2 ��2

2xp���p� + p�2 − �xp�p� + iyp�2��xp�+p
2 �p� + p�2 − �xp�p� + iyp�2�

+
g̃p��p� + p�p��p��1 + 2iyxp�+p + xp�+p

2 � + p�y2 + xp�+p
2 ��2

2xp�+p�p�2 − �xp�+p�p� + p� − iyp�2��xp�
2 p�2 − �xp+p��p + p�� − iyp�2�

+

�p� + p��8�p� + p� − 4�1 − iy�p + g̃p�+p�p� + p�� p� + p

p
�3 + iy� +

1

2
�1 + iy�2��

xp�+p
2 �p� + p�2 − �p� + p − �1 − iy�p�2

+

�p� + p��− 8p� − 4�1 − iy�p + g̃p�p�� p�

p
�3 + iy� −

1

2
�1 + iy�2��

xp�
2 p�2 − �p� + �1 − iy�p�2

+ �p → − p� . �5.47�

VI. INTERACTION WITH SHARP MOMENTUM-
TRANSFER CUTOFF

A. Explicit evaluation of the irreducible polarization

In this section we assume that the dimensionless interac-
tion gp is of the form

gp = g0��p0 − �p�� . �6.1�

In this case the p� integration in Eq. �5.45� is elementary and
can be carried out exactly. Note that all derivatives of inter-
action �6.1� vanish at p=0 so that f0�=0, which is certainly an
unphysical feature of the �-function cutoff. The inverse
length qc defined in Eq. �2.9� is then formally infinite, so that
regime �2.10� does not exist. Although for such an interac-
tion approximation A discussed in Sec. V B �i.e., replacing

�̃0�iy , p�	�̃0�iy ,0�= �1+y2�−1 in loop integrations� is never
justified, it is still instructive to evaluate Eq. �5.44� because it
allows us to explicitly see the partial cancellation between
contributions arising from the first-order diagram in Fig. 6�a�
and the AL diagram in Fig. 6�b�. To clearly exhibit this can-
cellation, it is instructive to evaluate the contributions

�̃1�iy , p� �first order in the effective interaction� and
�̃2�iy , p� �second order in the effective interaction� sepa-
rately. Therefore, we specify g̃p=g��p0− �p�� in Eqs. �5.36�
and �5.37� and perform the p� integration exactly. Recall that
the effective coupling constant g is defined as a function of
the bare coupling g0 via Eq. �5.9�. The p→0 limits of the
coefficients xp, ap, and bp given in Eqs. �5.19a�, �5.19b�, and
�5.19c� are now denoted by

x0 = 
1 + g , �6.2a�

a = x0 + 1, �6.2b�

b = x0 − 1. �6.2c�

Note that for small g,

b = a − 2 =
g

2
−

g2

8
+

g3

16
+ O�g4� . �6.3�

After some tedious algebra we find that the contribution from
the diagram �a� in Fig. 6 to expansion �5.18� can be written
as

− �1 + y2�2�̃1�iy,p� = − p0
2b2�3 + x0�

2ax0
�2 + g − �� + p2�2

3

1 − 3y2

1 + y2 +
�2 + g�

g
�4 − g� −

4�

g2 �4 + g −
g2

4
�

+
g − �

x0
Re�−

b2

a3 �1 − iy��x0 − iy�ln� p0
2a2 − p2�1 + iy�2

p2�1 + iy��x0 − iy�
� +

a2

b3 �1 − iy��x0 + iy�ln� 1 + iy

x0 + iy
��� , �6.4�

where we have defined

� = 1 + g + y2 = x0
2 + y2. �6.5�

If we neglect at this point the contribution �̃2�iy , p� involving two powers of the effective interaction, we recover from the
imaginary part of Eq. �6.4� our previous estimate12 for the damping of the ZS mode for q→0,
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�q 	
�

8

g3

x0a4

�q�3

vFm2 . �6.6�

In view of the discussion at the end of Sec. III this result should not be surprising: within our approximation the ZS mode is
located at higher energy than the single-pair continuum and is immersed in the multipair continuum, whose spectral weight is
generated by the logarithmic terms in Eq. �6.4�. The overlap of the multipair continuum with the ZS mode leads to the q3

damping, in agreement with the arguments by Teber.7

Unfortunately, the term in Eq. �6.4� which is responsible for result �6.6� is exactly cancelled by a similar term in −�1
+y2��̃2

AL�iy , p�. Explicitly carrying out the p� integration in Eq. �5.30� and adding contribution �5.31� from the Hartree-type of
term, we obtain for �p�� p0

− �1 + y2�2�̃2�iy,p� = p0
2 b2

2x0
3g�2 + g − �� + p0�p0 − �p��

b2

ax0
3�g�2 + g� − b�1 +

g

4
� − �x0

2�
+ p2�−

1 − 3y2

3�1 + y2�
+

g

2x0
−

�2 + g�
2g

�4 − g +
4

x0
� +

2�

g2 �4 + g −
g2

4
+

3g2

4x0
+ x0�4 − g��

−
�4 + g�2 + 8g�2 + g − ��

12x0�
+

g2�

16x0
5 ln�4p0�p0 − �p��x0

2 + p2�

p2�
�

+
g − �

x0
Re�b2

a3 �1 − iy��x0 − iy�ln� p0�p0 − �p��a2 + p2�1 + iy��x0 − iy�
p2�1 + iy��x0 − iy� �

−
a2

b3 �1 − iy��x0 + iy�ln� 1 + iy

x0 + iy
��� . �6.7�

Adding Eqs. �6.4� and �6.7� and rearranging terms, we obtain for expansion �5.18� of the inverse irreducible polarization for
sharp momentum-transfer cutoff

�̃�
−1�iy,p� = 1 + p0

2g1 + �1 + p0
2g2�y2 + p0�p��g3 + g4y2� +

p2

2 � 4g

3x0
− 2 +

b

gx0
�8 + 4g − g2� +

�

g2 �16b − 4ga + g2�1 + 3/x0��

−
�4 + 3g�2

6x0�
+

g2�

8x0
5 ln�4p0�p0 − �p��x0

2 + p2�

p2�
� − �1 + y2�

b2

a3x0
2 Re��1 − iy��x0 − iy�ln� p0a − �p��x0 − iy�

p0a + �p��1 + iy� ��� ,

�6.8�

where

g1 = −
b2

2x0
3�3 +

g

2

x0 + 3

x0 + 1
� = −

3

8
g2 +

5

8
g3 + O�g4� ,

�6.9a�

g2 =
b2

2x0
3 =

1

8
g2 −

1

4
g3 + O�g4� , �6.9b�

g3 =
b2

ax0
3�x0 +

g

4
b� =

1

8
g2 −

7

32
g3 + O�g4� , �6.9c�

g4 =
b2

ax0
=

1

8
g2 −

5

32
g3 + O�g4� . �6.9d�

Equation �6.8� has three important properties: �i� The loga-
rithmic term in Eq. �6.4� which is responsible for the q3

dependence of �q in Eq. �6.6� is exactly cancelled by a simi-
lar term with opposite sign arising from the AL diagram. �ii�

The mass-shell singularity at �= vFq associated with the
expansion of the free polarization �0�� ,q� in Eq. �5.35� has
disappeared in Eq. �6.8�, in agreement with our general con-
siderations in Sec. V C. �iii� Equation �6.8� contains a term
proportional to 1 /�, which after analytic continuation gives
rise to a mass-shell singularity at the physical energy �
= vq of the ZS mode.

The mass-shell singularity at �= vq is an artifact of the
sharp momentum-transfer cutoff used in this section in com-
bination with approximation A discussed in Sec. V B. In fact,
we shall show in Sec. VII that a more realistic interaction fq
with finite f0� does not lead to any mass-shell singularities,
even if we still use approximation A to evaluate Eqs.
�5.14�–�5.17�.

B. Renormalized ZS velocity

To calculate the renormalized ZS velocity it is sufficient
to set p=0 in Eq. �6.8�, so that the problems related to the
mass-shell singularity do not arise. Comparing Eq. �6.8� at
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p=0 with the defining Eq. �5.6� of the renormalization con-
stants Z1 and Z2, we find to order p0

2

Zi = 1 + p0
2gi, i = 1,2, �6.10�

which are nonlinear self-consistency equations for Z1 and Z2
because g1 and g2 are defined in terms of the renormalized
coupling g= �g0+Z1−Z2� /Z2 �see Eq. �5.9��. However, keep-
ing in mind that the difference g−g0 is proportional to p0

2 and
that Eq. �6.10� is only valid to order p0

2, we may ignore the
self-consistency condition and set Z1=Z2=1 in the expres-
sions for g1 and g2 on the right-hand side of Eq. �6.10�. From
Eq. �5.8� we then obtain for the renormalized ZS velocity

v
vF

=
Z1 + g0

Z2
= 
1 + g , �6.11�

where

g = g0 − p0
2g5, �6.12�

with

g5 = x0
2g2 − g1 =

b2

x0
3�2 +

g

4
�3 +

2

a
�� =

1

2
g2 −

3

4
g3 + O�g4� .

�6.13�

To order p0
2 we thus obtain for the energy of the ZS mode

�q 	 v�q� , �6.14�

with renormalized ZS velocity,

v = vF

1 + g0 − p0

2g5 = v0�1 − p0
2 g5

2x0
2 + O�p0

4�� ,

�6.15�

where v0=vF

1+g0 is the RPA result for the ZS velocity. A

graph of the relative change in the ZS velocity as a function
of the interaction strength g is shown in Fig. 7 �solid line�.
Obviously, even for large g and p0

2=O�1� the correction to
the RPA result v0 never exceeds more than a few percent.

C. Ad hoc regularization of the mass-shell singularity and
spectral line shape

Although for sharp momentum-transfer cutoff the dy-
namic structure factor exhibits �within approximation A dis-
cussed in Sec. V B� a mass-shell singularity at the ZS energy
v�q�, it is nevertheless instructive to follow Samokhin1 and
regularize the singularity by hand using the procedure out-
lined in Sec. III. Because the natural scale for the momentum
dependence is not 2kF but the scale q0 set by the momentum-
transfer cutoff, it is convenient to express the momentum
dependence via q̃=q /q0. Setting p= p0q̃ and writing

S��,q� =
�0

�
Im� 1

g0 + �̃�
−1�x + i0, q̃�

� , �6.16�

we obtain on the imaginary frequency axis

g0 + �̃�
−1�iy, q̃�

= ��1 + p0
2�g2 + g4�q̃��� − p0

2g6�q̃�

+ p0
2q̃2�h0 −

h1

�
+ ��g7 + g8 ln�1 +

4x0
2�1 − �q̃��

q̃2�
��

+ �g − ��
b2

a3x0
Re��1 − iy��x0 − iy�

�ln�a − �q̃��x0 − iy�
a + �q̃��1 + iy�

��� , �6.17�

where

g6 = x0
2g4 − g3 =

b2

ax0
3g�2 + g −

b

g
�1 +

g

4
�� =

3

16
g3 + O�g4� ,

�6.18a�

g7 =
1

2
+

3

2x0
−

8

g
�a

4
−

b

g
� =

1

8
g2 −

11

64
g3 + O�g4� ,

�6.18b�

g8 =
g2

16x0
5 =

1

16
g2 −

5

32
g3 + O�g4� , �6.18c�

h0 = − 1 +
2g

3x0
+

b

2gx0
�8 + 4g − g2� = 1 +

1

6
g −

1

12
g2 + O�g3� ,

�6.18d�

h1 =
�1 + 3x0

2�2

12x0
=

�4 + 3g�2

12x0
=

4

3
+

4

3
g +

1

4
g2 + O�g3� .

�6.18e�

From Eq. �6.17� it is obvious that our functional bosonization
approach yields a systematic expansion of the inverse irre-
ducible polarization in powers of the small parameter p0
=q0 / �2kF�. Note that only h0 and h1 have finite limits for g
→0, whereas the other couplings g1 , . . . ,g8 vanish at least as
g2 �the coupling g6 vanishes even as g3�.

FIG. 7. �Color online� Solid line: relative renormalization
�v / �v0p0

2��v−v0� / �v0p0
2�=−g5 / �2x0

2� of the ZS velocity in units
of p0

2 as a function of the interaction strength g �see Eq. �6.15��.
Dashed line: graph of the factor Zw defined in Eq. �6.20�, which
estimates the interaction-induced relative change in the width of ZS
resonance for q�qc �see Eqs. �6.19� and �6.20��.
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In the limit g→0 Eq. �6.17� correctly reduces to the ex-
pansion of the noninteracting inverse polarization given in
Eq. �3.14�. However, the term h1 /� generates a mass-shell
singularity at the true collective-mode energy �= vq. For-
tunately, this singularity can be avoided if we use a more
physical interaction whose Fourier transform fq is analytic
for small q, as will be shown explicitly in Sec. VII. Here we
shall simply regularize the mass-shell singularity by hand
using the self-consistent regularization procedure proposed
by Samokhin,1 which we have already described in detail in
Sec. III. Repeating the steps leading from Eq. �3.21� to Eq.
�3.26�, we obtain from the self-consistent regularization of
the singular term proportional to h1 /� in Eq. �6.17� the fol-
lowing estimate for the width of the ZS mode:

wq =

h1

2x0

q2

2m
= Zw

q2

2
3m
, �6.19�

where we have factored out the corresponding estimate in the
absence of interactions given in Eq. �3.26�, and the dimen-
sionless factor Zw is given by

Zw =
3h1

4x0
2 =

1 +
3

4
g

�1 + g�3/4 . �6.20�

Note that Zw�1+ 3
32g2+O�g3� for g→0 and Zw� 3

4g1/4 for
g→�. A graph of Zw as a function of the interaction strength
g is shown in Fig. 7 �dashed line�. The estimate �Eq. �6.19��
for the width of the ZS resonance on the frequency axis
scales as q2, which is for small q much larger than our pre-
vious estimate �Eq. �6.6�� based on the evaluation of only the
first-order diagram �a� in Fig. 2. The q2 scaling of the width
of the ZS resonance has already been found by Samokhin1

and has been confirmed later in Refs. 3, 4, and 9. However,
the derivation of Eq. �6.19� is based on a rather ad hoc regu-
larization prescription of the mass-shell singularity in Eq.
�6.17�, which ignores in particular the divergent real part of
the term h1 /�. Let us nevertheless proceed and calculate the
corresponding dynamic structure factor, which can be ob-
tained by replacing the term h1 /�=h1 / �x0

2+y2� on the right-
hand side of Eq. �6.17� by

h1

� → h1

x0
2−

��+iwq�2

�vFq�2

. �6.21�

The finite imaginary part wq in this expression is a rough
estimate of the modification of the spectral line shape due to
the terms which have been neglected by making approxima-
tion A discussed in Sec. V B. The typical form of the dy-
namic structure factor in the regime p� p0 implied by Eqs.
�6.17�, �6.19�, and �6.21� is shown in Fig. 8. Obviously,
within our approximation the dynamic structure factor does
not exhibit any threshold singularities, which according to
Refs. 4 and 9 are a generic feature of the dynamic structure
factor of Luttinger liquids. It turns out that the absence of
threshold singularities in Fig. 8 is an artifact of the rather
simple regularization prescription �6.21� of the unphysical
mass-shell singularity in Eq. �6.17�. In Sec. VII we shall

show how to recover the threshold singularities within our
functional bosonization approach.

VII. INTERACTION WITH REGULAR MOMENTUM
DEPENDENCE

In this section we shall show that for more realistic inter-
actions whose Fourier transform is for small momenta of the
form fq= f0+ 1

2 f0�q
2+O�q4� with f0��0, we do not encounter

any mass-shell singularities. In fact, we believe that even for
sharp momentum-transfer cutoff, fq= f0��q0−q�, our pertur-
bative result �5.1� does not suffer from mass-shell singulari-
ties as long as we do not rely on approximation A discussed
in Sec. V B; in other words, the mass-shell singularity h1 /�
in Eq. �6.17� is an artifact of the sharp momentum-transfer
cutoff in combination with our neglect of curvature correc-
tions to the free polarization in loop integrations. While we
are not able to evaluate Eqs. �5.14�–�5.17� analytically with-
out relying on approximation A, we shall in this section
abandon the sharp momentum-transfer cutoff and assume
that the interaction fq can be expanded for small q as in Eq.
�2.8�. Later we shall argue that as long as we rely on approxi-
mation A, our result for S�� ,q� can only be trusted for q
�qc=1 / �m�f0��� �see Eq. �2.9��. However if f0� is sufficiently
large, then there exists a parametrically large regime qc�q
�kF of wave vectors where our calculation is valid.

A. Imaginary part of ��
−1(� ,q)

Let us first calculate the imaginary part of the dimension-

less inverse polarization �̃�
−1�x+ i0, p� given in Eq. �5.44�

assuming for simplicity p�0. From Eqs. �5.45� and �5.47�
we obtain

Im �̃�
−1�x + i0,p� = Im Ĩ�x + i0,p�

=
1

2
�

0

�

dp�p� Im�J̃�x + i0,p,p��

+ J̃�− x − i0,p,p��� . �7.1�

FIG. 8. �Color online� Graph of the dynamic structure factor
S�� ,q� as a function of x−x0= ��−vq� / �vFq� for fixed q=0.08kF.
The line shape has been calculated from Eqs. �6.17�, �6.19�, and
�6.21�. The distance between the local maxima is proportional to
wq�q2 /m.
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In order to calculate the imaginary part of J̃�x+ i0, p , p��, we
first perform a partial fraction decomposition of Eq. �5.47�,
then carry out the analytic continuation to the real frequency
axis iy→x+ i0, and finally take the imaginary part using
Im�a−x− i0�−1=���a−x�. After some lengthy algebra we
obtain

Im J̃�x + i0,p,p�� = −
��p� + p�
2xp�xp�+p

�1 − xp�x̃p�+p − x�xp� − x̃p�+p��2

�� �p��xp�+ x̃p�+p� − p�x − x̃p�+p��

− �p → − p� , �7.2�

where we have defined x̃p+p�=sgn�p+ p��xp+p�. In order to
perform the p� integration in Eq. �7.1�, we use the fact that
by assumption both p and p� are small compared to unity so
that we may expand xp to first order in p2,

xp = x0 +
x0�

2
p2 + O�p4� , �7.3�

where from Eq. �5.11�,

x0� =
sgn f0�

�x0pc
. �7.4�

Note that for small pc the coefficient x0� is large compared to
unity. The � functions in Eq. �7.2� can then be approximated
by

��p��xp� + xp�+p� − p�x − xp�+p�� 	
1

2xp
��p� − p

x − xp

2xp
� ,

�7.5�

��p��xp� − xp�+p� − p�x + xp�+p��

	
2

3�x0�p�
��p�2 + p�p +

2�x + xp�
3x0�

� . �7.6�

In Eq. �7.5� we have expanded the argument of the � func-
tion to linear order in p and p�, assuming that both dimen-
sionless momenta are small. On the other hand, due to the
cancellation of the leading term in the difference xp�−xp�+p in
the � function of Eq. �7.6�, the corresponding expansion has
to be carried out to cubic order in the momenta. The integra-
tion in Eq. �7.2� can now be carried out analytically and we
obtain for small p�0

Im �̃�
−1�x + i0,p�

= − Z2��x,p�

= − �2pc���x − xp�g̃p
2�̃p

x2 − xp
2

12x0
4 + h1CI� x − xp

�̃p
�� ,

�7.7�

where

�̃p =
3p2

8�x0pc
, �7.8�

and the function CI�u� is given by

CI�u� = ��u���1 − u�
u


1 − u
. �7.9�

Note that the coefficient h1= �1+3x0
2�2 / �12x0� on the right-

hand side of Eq. �7.7� has also appeared for sharp
momentum-transfer cutoff �see Eq. �6.18e�� in form of the
residue of the mass-shell singularity h1 /� in our expression
�6.17� for the irreducible polarization. A graph of CI�u� is
shown as the dashed line in Fig. 9. Mathematically, the
square-root singularity of CI�u� for u→1 originates from the
special point x−xp= �̃p where the argument of the Dirac �
function on the right-hand side of Eq. �7.5� has a double root.
We believe that the divergence of CI�u� for u→1 is unphysi-
cal and indicates that the approximations leading to Eq. �7.5�
are not sufficient in this regime. Hence, within our approxi-
mations we can only obtain reliable results for the spectral
line shape as long as the ratio �x−xp� / �̃p is not too close to
unity.

B. Real part of ��
−1(� ,q)

For pc�1 and p�1 we can obtain the contribution from

Re Ĩ�x+ i0, p� analytically from Eqs. �5.45� and �5.47� using
the fact that among the corrections of order p2 only terms
proportional to p2 / pc need to be retained. We obtain for
x�0 and p�0

Re Ĩ�x + i0,p� = I1 − x2I2 + �pch1 sgn f0�CR� x − xp

�̃p
� ,

�7.10�

where

I1 = − �
0

�

dpp
�xp − 1�2

2xp
3 �3xp

2 + 2xp + 1� + 2�pch1 sgn f0�,

�7.11�

FIG. 9. �Color online� Graph of the functions CI�u� and CR�u�
defined in Eqs. �7.9� and �7.13�. The dotted lines indicate
asymptotic limits.

PIROOZNIA, SCHÜTZ, AND KOPIETZ PHYSICAL REVIEW B 78, 075111 �2008�

075111-18



I2 = �
0

�

dpp
�xp − 1�2

xp
, �7.12�

and the function CR�u� is given by

CR�u� =
u


�1 − u�
���1 − u�ln� 1 + 
1 − u

1 − 
1 − u
�

− 2��u − 1�arctan� 1

u − 1

�� . �7.13�

A graph of CR�u� is shown in Fig. 9 �solid line�. Note that
CR�u� and CI�u� can be written as CR�u�=Re C�u+ i0� and
CI�u�=Im C�u+ i0�, where the complex function C�z� is

C�z� =
z

i
1 − z
ln�
1 − z + 1


1 − z − 1
� . �7.14�

The real part of our dimensionless inverse polarization can
be written as

Re �̃�
−1�x + i0,p� = Z1 − Z2x2 + �pch1 sgn f0�CR� x − xp

�̃p
� ,

�7.15�

with

Z1 = 1 + I1 + IH, Z2 = 1 + I2 − IH. �7.16�

By assumption, the bare interaction fq is negligibly small for
momentum transfers exceeding q0�kF, so that the integrals
I1, I2, and IH are proportional to p0

2= �q0 / �2kF��2�1 and
hence Zi=1+O�p0

2�. Keeping in mind the self-consistent
definition �5.8� of x0, we finally obtain for positive x and p

gp + Re �̃�
−1�x + i0,p� = Z2�xp

2 − x2 + R�x,p�� , �7.17�

where

R�x,p� =
�pch1

Z2
sgn f0�CR� x − xp

�̃p
� . �7.18�

C. Spectral line shape of S(� ,q)

In terms of the scaled real and imaginary parts R�x , p� and
��x , p� of the inverse polarization, given in Eqs. �7.7� and
�7.17�, the dynamic structure factor can be written as

S��,q� =
�0

�Z2

��x,p�
�x2 − xp

2 − R�x,p��2 + �2�x,p�
. �7.19�

The resulting line shape for p� pc is shown in Fig. 10. Ob-
viously, S�� ,q� exhibits a threshold singularity at x=xp, cor-
responding to the threshold frequency,

�q
−  vFqxp = vq +

sgn f0�

2�x0

q3

2mqc
. �7.20�

Moreover, most of the spectral weight is smeared out over
the interval 0�x−xp��̃p or equivalently �q

−����q
−+�q,

where the energy scale �q is defined by

�q = vFq�̃p =
3

8�x0

q3

2mqc
. �7.21�

The energy �q can be identified with the width of the ZS
resonance on the frequency axis. The crucial point is now
that for q�qc Eq. �7.21� is much larger than the estimated
broadening wq�q2 /m of the ZS resonance due to the terms
which we have neglected by making approximation A dis-
cussed in Sec. V B �which amounts to ignoring in bosonic
loop integrations nonlinear terms in the energy dispersion�.
Our approximation A is therefore only justified in the regime
where the broadening �q due to the q dependence of the
interaction fq is large compared to the broadening wq due to
the nonlinear energy dispersion in bosonic loop integrations.
We thus conclude that the calculations in this section are
only valid as long as �q�wq. A comparison of �q and wq is
shown in Fig. 11. Obviously, the condition wq=�q defines a
characteristic crossover scale q� where the q dependence of
the width of the ZS resonance changes from q2 to q3. Using
Eqs. �6.19� and �7.21� we obtain the following estimate for
the crossover momentum scale:

q� =
8�Zwx0

3
3
qc, �7.22�

which has the same order of magnitude as qc=1 / �m�f0���. We
conclude that the results for S�� ,q� presented in this section
are only valid for q�q� and hence do not describe the
asymptotic q→0 regime. However the scale q� can be quite
small for some interactions. For example, if the interaction fq
can be approximated by Lorentzian �2.6� with screening
wave vector q0�kF, then qc=q0

2 / �2mf0� is quadratic in q0.

FIG. 10. �Color online� Graph of the dynamic structure factor
S�� ,q� given in Eq. �7.19� as a function of x−xp for p=0.04
=25pc and g=1. For simplicity we have set Z2	1, which is accu-
rate for p0�1. For p� pc most of the spectral weight is carried by
the main shoulder whose lower edge x→xp is bounded by a thresh-
old singularity. The width of the main shoulder on the x axis scales
as �̃p� p2 / pc. Recall that x=� / �vFq�, so that the corresponding
width on the frequency axis scales as �q=vFq�̃p�q3 / �mqc�. For p
� pc the small satellite peak emerging above the upper edge of the
main shoulder carries negligible spectral weight and is probably an
artifact of our approximations.
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For long-range interactions the regime q��q�q0 where our
calculation is valid can therefore be quite large and physi-
cally more relevant than the asymptotic long-wavelength re-
gime q�q�.

The small “satellite peak” slightly above the main shoul-
der in Fig. 10 is probably an artifact of our approximations,
in particular of approximation A discussed in Sec. V B. It is
easy to show that the satellite peak is located at a distance
�x� pc

3 / p2��̃p above the upper edge xp+ �̃p of the main
shoulder and its width is proportional to p2�̃p� p4 / pc��x
��̃p. Note that in the regime q�qc where our calculation is
valid the threshold singularity is located at �q

−	vq−�q �up
to corrections of the order q2 /m��q�, while the energy scale
of the satellite peak is vq+O�q2 /m�. However, as discussed
after Eq. �7.9�, in the regime ��x−xp� / �̃p−1��1 our approxi-
mation A is not reliable, so that the detailed line shape in the
vicinity of the satellite peak is probably incorrect. Fortu-
nately, for p� pc the satellite peak carries negligible weight,
so that our calculation reproduces the main features of the
spectral line shape. We speculate that a more accurate evalu-
ation of our self-consistency equation for ���� ,q� derived in
Sec. V A, which does not rely on approximation A in Sec.
V B, will generate additional weight in the dip between the
upper edge of the main shoulder and the satellite peak, re-
sulting in a single local maximum at the upper edge of the
main shoulder. The spectral line shape looks then qualita-
tively similar to the line shape proposed in Refs. 4 and 9.

Let us next consider the line shape in the vicinity of the
threshold singularity x→xp. For 0� �x−xp� / �̃p�1 we may
approximate

��x,p� 	 2�x0��p��x − xp� , �7.23�

R�x,p� 	 − 2x0�p�x − xp�ln� 4�̃p

x − xp
� , �7.24�

where we have defined

�p = − sgn f0�
�pch1

2Z2x0�̃p

= − sgn f0�
3p�

2

4p2 . �7.25�

In the last line we have approximated Z2	1. From the above
discussion it is clear that this expression can only be trusted
for p� p�. A graph of �p as a function of p / p� is shown in
Fig. 12. In the regime ��p�ln�4�̃p / �x−xp���1, which is
equivalent with

0 � x − xp � 4�̃p exp�− 1/��p�� , �7.26�

the dynamic structure factor can thus be approximated by

S��,q� �
�0

2x0Z2��p�
1

�x − xp�ln2� 4�̃p

x − xp
� . �7.27�

According to Pustilnik et al.,4 the logarithmic singularity can
be resummed to all orders, so that it is transformed into an
algebraic one. Assuming that this is indeed correct, we can
replace

x2 − xp
2 − R�x,p� 	 2x0�x − xp��1 + �p ln� 4�̃p

x − xp
��

→ 2x0�x − xp�� 4�̃p

x − xp
��p

. �7.28�

For x→xp the dynamic structure factor then diverges as

S��,q� �
�0

2x0Z2

��p�
�4�̃p�2�p

1

�x − xp��p
, �7.29�

with the threshold exponent

�p = 1 − 2�p = 1 + sgn f0�
3p�

2

2p2 . �7.30�

Note that for f0��0 and p�1 the weak-coupling estimate for
�p given by Pustilnik et al.4 is in our notation

FIG. 11. �Color online� Solid line: dimensionless ZS damping
�̃p=�q / �vFq� defined in Eq. �7.21� as a function of p / p�. Dashed
line: estimate of the width w̃p=wq / �vFq�= �Zw /
3�p of the ZS reso-
nance given in Eq. �6.19�.

FIG. 12. �Color online� Solid line: graph of �p defined in Eq.
�7.25� as a function of p / p� for f0��0. The dashed line is the weak-
coupling result �p	1 /2− p / �4�pc� obtained by Pustilnik et al. in
Ref. 4. The dashed-dotted curve is a simple parabolic interpolation.
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�p 	
p

2�pc
, �7.31�

implying

�p =
1

2
�1 − �p� =

1

2
�1 −

p

2�pc
� . �7.32�

As shown in Fig. 12, this is consistent with a smooth cross-
over to our result �7.25� at p / p�=O�1�. Qualitatively, we
expect that the behavior of �p in the crossover regime re-
sembles the dashed-dotted interpolation curve in Fig. 12.
Note that �p�1 /2 for all p, so that �p�0. For some inte-
grable models where �p has recently been calculated
exactly,5,6 the momentum dependence of �p looks different
from our result for the FSM. For example, in the Calogero-
Sutherland model �p is independent of p �see Ref. 5�. How-
ever, the Fourier transform fq of the interaction in the
Calogero-Sutherland model vanishes for q=0, while in the
integrable XXZ chain considered in Refs. 6 and 9–11 the
effective interaction of the equivalent one-dimensional fer-
mion system involves also momentum transfers of the order
of kF. Moreover, in the XXZ chain there exists no crossover
scale qc satisfying qc= �m�f0���

−1�kF, so that the intermediate
regime qc�q�kF where �q�q3 /qc simply does not exist.
The existence of such an intermediate regime seems to be a
special feature of the FSM considered here, where fq in-
volves only small momentum transfers and has a finite limit
for q=0.

Within our perturbative approach we cannot justify the
resummation procedure �7.28�. Note that for f0��0 the expo-
nent �p in Eq. �7.25� is negative, so that the singularity in
Eq. �7.29� is not integrable and exact sum rules16 cannot be
satisfied. In contrast, the original logarithmic singularity in
Eq. �7.27� is integrable �the integral �0dt / �t ln2 t� is finite�,
so that at least for f0��0 the logarithm found in perturbation
theory cannot be exponentiated. On the other hand, an inter-
action with f0��0 seems to be unphysical and does not de-
scribe a stable Luttinger liquid.39

Finally, consider the tails of the spectral function. For x
�xp we obtain from Eqs. �7.7� and �7.19�

S��,q� �
�0

�Z2

��x,p�
x4 , �7.33�

��x,p� �
�2pc

12Z2x0
4 g̃p

2�̃px2. �7.34�

Inserting our result �7.8� for �̃p we obtain

S��,q� �
�0g̃p

2

32Z2
2x0

5� q2

2m�
�2

, �7.35�

in agreement with Refs. 7, 9, 10, and 14. Note that the tail of
S�� ,q� is determined by the first term on the right-hand side
of the damping function ��x , p� given in Eq. �7.7�, whereas
the regime close to the ZS resonance is determined by the
second term involving the complex function C�z�. This is the
reason why the spectral line shape close to the ZS resonance

cannot be obtained via extrapolation from the tails assuming
a Lorentzian line shape.

VIII. SUMMARY AND CONCLUSIONS

In this work we have used functional bosonization to cal-
culate the dynamic structure factor S�� ,q� of a generalized
Tomonaga model �which we have called forward-scattering
model�, consisting of spinless fermions in one dimension
with quadratic energy dispersion and an effective density-
density interaction involving only momentum transfers
which are small compared to kF. We have derived in Sec. V
a self-consistency equation for the irreducible polarization
���� ,q� which does not suffer from the mass-shell singu-
larities encountered in other perturbative approaches. Al-
though for the explicit evaluation of S�� ,q� we had to make
some drastic approximations �in particular, in bosonic loop
integrations we have neglected curvature corrections to the
free polarization, see approximation A discussed in Sec.
V B�, we have found a regime of wave vectors qc�q�kF
where an explicit analytic calculation of the spectral line
shape is possible. The crossover scale qc=1 / �m�f0��� is deter-
mined by the second derivative f0� of the Fourier transform of
interaction at q=0. For interactions whose Fourier transform
can be approximated by a Lorentzian with screening wave
vector q0�kF, the crossover scale qc is proportional to q0

2, so
that the regime qc�q�kF is quite large and can be experi-
mentally more relevant than the asymptotic long-wavelength
regime. We have shown that for qc�q�kF the width of the
ZS resonance on the frequency axis scales as �q�q3 / �mqc�.
Our result is consistent with a smooth crossover at q	qc to
the asymptotic long-wavelength result �q�q2 /m obtained by
other authors.1,4,9 The spectral line shape is non-Lorentzian,
with a main hump whose low-energy side is bounded by a
threshold singularity at �=�q

−=vq−�q, a small local
maximum around �	vq, and a high-frequency tail which
scales as q4 /�2. For �→�q

−+0 the threshold singularity
is within our approximation logarithmic, S�� ,q�
� ���−�q

−�ln2��−�q
−��−1. Assuming that higher orders in per-

turbation theory exponentiate the logarithm, we obtain an
algebraic threshold singularity with exponent �q=1−2�q
and �q�qc

2 /q2 for q�qc.
Finally, let us point out a number of open problems: �1�

It is by now established that, at least in integrable
models, S�� ,q� indeed exhibits algebraic threshold
singularities.5,6,9–11 However, for generic nonintegrable mod-
els there is no proof that the logarithmic singularities gener-
ated in higher orders of perturbation theory indeed conspire
to transform the logarithm encountered at the first order into
an algebraic singularity, as suggested in Ref. 4. This would
require a thorough analysis of the higher-order terms in per-
turbative expansion, which so far has not been performed.
Possibly a careful analysis of the functional renormalization-
group flow equation for the irreducible polarization derived
in Refs. 40 and 41 will shed some light onto this difficult
problem. However this seems to require extensive numerics,
which is beyond the scope of this work. �2� For the explicit
evaluation of the self-consistency equation for the irreducible
polarization ���� ,q� derived in Sec. V A, we had to rely on
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this work on approximation A discussed in Sec. V B. We
have argued that this approximation is not sufficient to cal-
culate the dynamic structure factor for q�qc because it ne-
glects the dominant damping mechanism in this regime.
Moreover, for sharp momentum-transfer cutoff our approxi-
mation A breaks down for frequencies in the vicinity of the
mass-shell singularity. It would be interesting to evaluate the
self-consistency equation for the irreducible polarization
���� ,q� derived in Sec. V A without relying on approxima-
tion A. We believe that in this case our functional bosoniza-
tion result for S�� ,q� does not exhibit any mass-shell singu-
larities even for sharp cutoff. The explicit evaluation of the
relevant integrals is quite challenging and probably requires
considerable numerical effort �including a numerical analytic
continuation�, which is beyond the scope of this work. �3� By
assumption, the interaction of the FSM considered in this
work is dominated by small momentum transfers q�kF. On
the other hand, the Fourier transform of the effective inter-
action in the Jordan-Wigner transformed XXZ chain studied
in Refs. 9–11 has also components involving momentum
transfers of the order of kF. It should be interesting to inves-
tigate more thoroughly how the dynamic structure factor de-
pends on the properties of the interaction. Unfortunately, the
FSM discussed in this work is not integrable and there seems
to be no integrable model with quadratic energy dispersion
where the interaction involves only small momentum trans-
fers and has a finite limit for q→0.
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APPENDIX: FERMION LOOPS FOR QUADRATIC
DISPERSION IN ONE DIMENSION

In the functional bosonization approach the vertices of the
interaction part Sint���� of the bosonized action �4.20� are
proportional to the symmetrized closed fermion loops �cf.
Eq. �4.21�� defined by

LS
�n��Q1, . . . ,Qn� =

1

n! �
P�1,. . .,n�

L�n��QP�1�, . . . ,QP�n�� ,

�A1�

where the sum is over all permutations P�1, . . . ,n� of
1 , . . . ,n, and the nonsymmetrized loops L�n��Q1 , . . . ,Qn�
= L̄�n��Q̄1 , . . . , Q̄n� are given by

L̄�n��Q̄1, . . . ,Q̄n� = �
K
�
i=1

n

G0�K − Q̄i�

= �
K

G0�K − Q̄1�G0�K − Q̄2� ¯ G0�K − Q̄n� ,

�A2�

with the shifted labels Q̄j =�i=1
j−1Qi and fermionic Green’s

functions G0�K� from the self-consistent Hartree approxima-
tion �see Eq. �4.16��.

For fermions with quadratic energy dispersion in D di-
mensions, Neumayr and Metzner28,29 �see also Ref. 30� de-
rived reduction formulas which express the nonsymmetrized
loops for n�D+1 in terms of linear combinations of the

more elementary loop L̄�D+1��Q̄1 , . . . , Q̄D+1�. In particular, in

D=1 the nonsymmetrized loops L̄�n��Q̄1 , . . . , Q̄n� with

n�2 can be expressed in terms of the two loop L̄�2��0,−Q�
=LS

�2��−Q ,Q�=−�0�Q�.
In one dimension, these reduction formulas can be ob-

tained by straight-forward partial fraction decomposition.
Performing the frequency integration in Eq. �A2�, we obtain

L̄�n��Q̄1, . . . ,Q̄n� = �
i=1

n �
−kF

kF dk

2�
�
j � i
j=1

n
1

�ij�k�
, �A3�

where Q̄i= �i�̄i , q̄i� and

�ij�k� = i��̄i − �̄ j� + �k − �k+q̄i−q̄j
. �A4�

For quadratic dispersion relation �k= �k2−kF
2� / �2m� we may

alternatively write Eq. �A3� as

L̄�n��Q̄1, . . . ,Q̄n� = �
i=1

n �
−kF

kF dk

2�
�
j � i
j=1

n
m

�q̄j − q̄i��k − kij�
,

�A5�

where we have defined

kij =
q̄j − q̄i

2
+ im

�̄ j − �̄i

q̄j − q̄i

. �A6�

We can now perform a partial fraction expansion with re-
spect to k to obtain

L̄�n��Q̄1, . . . ,Q̄n� = �
i � j
i,j=1

n � �
l � i, j

l=1

n

Hijl�−1
m

q̄j − q̄i
�

−kF

kF dk

2�

1

k − kij
,

�A7�

with

Hijl =
1

qij
�i��ilqlj − qil�lj� −

qliqljqij

2m
� . �A8�

Here, we have introduced the notation
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qij = q̄i − q̄j = � �
l=j

i−1

ql, i � j

− �
l=i

j−1

ql, j � i� �A9�

and similarly for �ij = �̄i− �̄ j. To obtain Eq. �A8�, we have
used qij =qil+qlj and �ij =�il+�lj. Comparison with the spe-
cial case n=2 then yields

L�n��Q1, . . . ,Qn� = − �
i � j
i,j=1

n � �
l � i, j

l=1

n

Hijl�−1

�0�Qij� ,

�A10�

with Qij = �i�ij ,qij�. The function �0�Qij� is explicitly given
in Eq. �3.4�. Our result �A10� is equivalent with Eq. �19� of
Ref. 29.

After explicitly performing the sum over all permutations
in Eq. �A1�, the resulting expressions for the symmetrized
loops are rather complicated. Therefore, we shall discuss
separately below the symmetrized three loop and the sym-
metrized four loop for the particular combination of argu-
ments needed in our perturbative calculation. However, with-
out explicitly evaluating the loops the following two general
properties can be established: �1� The symmetrized n loops
LS

�n��Q1 , . . . ,Qn� are finite for all values of their arguments.29

This guarantees that in the perturbative expansion of the ir-
reducible polarization ���Q� in powers of the RPA interac-
tion no infrared singularities are encountered. �2� Rewriting
the symmetrized n loops in dimensionless form, we define

the dimensionless symmetrized n loop L̃S
�n��Q1 , . . . ,Qn� via

�n − 1� ! LS
�n��Q1, . . . ,Qn� =

�0

�mvF
2�n−2 L̃S

�n��y1,p1; ¯ ;yn,pn� .

�A11�

Note that a finite limit of the dimensionless functions L̃S
�n� for

small momenta does not contradict the loop cancellation
theorem25,27,29,32,33 because according to Eq. �A11� the physi-
cal symmetrized loops LS

�n� involve extra powers of 1 /m, so
that they vanish for 1 /m→0.

1. Symmetrized three loop

In terms of the dimensionless variables introduced in Eqs.
�3.11� and �3.12�, we may write the symmetrized three loop
in the dimensionless form �Eq. �A11��,

2LS
�3��i�1,q1;i�2,q2;− i�1 − i�2,− q1 − q2�

=
�0

mvF
2 L̃S

�3��iy1,p1;iy2,p2� , �A12�

with

L̃S
�3��iy1,p1;iy2,p2� =

1

�y1 − y2�2 + �p1 + p2�2� 1

s2
�̃0�iy1,p1�

+
1

s1
�̃0�iy2,p2�

−
1

s1s2
�̃0�iy1s1 + iy2s2,p1 + p2�� ,

�A13�

where we have defined

s1 =
p1

p1 + p2
=

r

r + 1
, s2 =

p2

p1 + p2
=

1

r + 1
, �A14�

with r= p1 / p2. For later convenience we also define

r1 =
p1

p1 − p2
=

r

r − 1
, r2 =

p2

p2 − p1
=

− 1

r − 1
. �A15�

Note that by construction s1+s2=r1+r2=1.
At the first sight it seems that the symmetrized three loop

diverges for �p1 / p2�→0 or �p2 / p1�→0. Moreover, the pref-
actor in Eq. �A13� diverges in the special limit p1→p2 and
y1→y2. It turns out, however, that all divergences cancel and
the symmetrized three loop is everywhere of the order of
unity. This nontrivial cancellation cannot be obtained by
power counting and can be viewed to be a consequence of
the asymptotic Ward identity associated with the separate
conservation of left- and right-moving particles for linearized
energy dispersion.32,33

The limiting behavior of the function L̃S
�3��iy1 , p1 ; iy2 , p2�

for p1→0 and p2→0 is not unique but depends on the ratio
r= p1 / p2. Using Eq. �3.16� we obtain after some algebra

lim
pi→0,p1/p2=r

L̃S
�3��iy1,p1;iy2,p2� = L̃S,0

�3��iy1,iy2,r� , �A16�

with

L̃S,0
�3��iy1,iy2,r� = −

1 − y1y2 − �y1 + y2��s1y1 + s2y2�
�1 + y1

2��1 + y2
2��1 + �s1y1 + s2y2�2�

,

�A17�

which is manifestly finite for all values of its arguments.

2. Symmetrized four loop

Since the symmetrized four loop is more complicated than
the three loop, we only give an explicit result for the special
combination of external labels needed in Eq. �5.14�. The di-
mensionless symmetrized four loop can then be expressed as

6LS
�4��i�1,q1;− i�1,− q1;i�2,q2;− i�2,− q2�

=
�0

�mvF
2�2 L̃S

�4��iy1,p1;iy2,p2� , �A18�

where
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L̃S
�4��iy1,p1;iy2,p2� = +

p1

2
Re�p+C+

2 + p−C−
2 + 2p1C+

�C−��̃0�iy1,p1� +
p2

2
Re�p+C+

2 − p−C−
2 − 2p2C+C−��̃0�iy2,p2�

− p+
2�Re C+�2�̃0�iy1s1 + iy2s2,p+� − p−

2�Re C−�2�̃0�iy1r1 + iy2r2,p−�

+
1

2
Im�C+ − C−�Im�W�iy1,p1� − W�iy2,p2�� − Re�W�iy1,p1�W�iy2,p2�� . �A19�

Here, we have introduced y=y1y2, p= p1 p2, as well as

C =
1

p1p2�iy− − p�
, �A20�

and the complex function

W�iy,p� =
1

2p
� 1

iy + 1 + p
−

1

iy + 1 − p
� . �A21�

Naively, one would again expect the expression in Eq. �A19� to be singular for y1→y2 and �p1�→ �p2� or if p1 / p2 approaches
either zero or infinity. Yet, all singularities cancel and the symmetrized four loop remains finite for all values of its arguments.
To exhibit this explicitly, consider again the limit,

lim
pi→0,p1/p2=r

L̃S
�4��iy1,p1,iy2,p2� = L̃S,0

�4��iy1,iy2,r� , �A22�

where, after some lengthy algebra, we obtain with ti=risi

L̃S,0
�4��iy1,iy2,r� = −

�1 − y1
2��1 − y2

2�
�1 + y1

2�2�1 + y2
2�2 +

1

�1 + y1
2�2�1 + y2

2�2�1 + �s1y1 + s2y2�2��1 + �r1y1 + r2y2�2�

��− 1 + 6y1y2 + t1t2�y1 − y2�2�y1
2 + y2

2 + 6y1y2� + 2�t1y1 + t2y2�2y1y2�4 − y1y2� + 2�t1y1 + t2y2�

���t1y1 − t2y2��y1
2 − y2

2� + �t1y2 + t2y1�� + �t1y1
2 + t2y2

2�2 + �t1y1
2 + t2y2

2��2 − y1
2y2

2� + �t1y2
2 + t2y1

2�� . �A23�
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